Hubbry Logo
search button
Sign in
Donaldson theory
Donaldson theory
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Donaldson theory
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Donaldson theory Wikipedia article. Here, you can discuss, collect, and organize anything related to Donaldson theory. The purpose of the hub is to connect...
Add your contribution
Donaldson theory

In mathematics, and especially gauge theory, Donaldson theory is the study of the topology of smooth 4-manifolds using moduli spaces of anti-self-dual instantons. It was started by Simon Donaldson (1983) who proved Donaldson's theorem restricting the possible quadratic forms on the second cohomology group of a compact simply connected 4-manifold. Important consequences of this theorem include the existence of an exotic R4 and the failure of the smooth h-cobordism theorem in 4 dimensions. The results of Donaldson theory depend therefore on the manifold having a differential structure, and are largely false for topological 4-manifolds.

Many of the theorems in Donaldson theory can now be proved more easily using Seiberg–Witten theory, though there are a number of open problems remaining in Donaldson theory, such as the Witten conjecture and the Atiyah–Floer conjecture.

See also

[edit]

References

[edit]
  • Donaldson, Simon (1983), "An Application of Gauge Theory to Four Dimensional Topology", Journal of Differential Geometry, 18 (2): 279–315, MR 0710056.
  • Donaldson, S. K.; Kronheimer, P. B. (1997), The Geometry of Four-Manifolds, Oxford Mathematical Monographs, Oxford: Clarendon Press, ISBN 0-19-850269-9.
  • Freed, D. S.; Uhlenbeck, K. K. (1984), Instantons and four-manifolds, New York: Springer, ISBN 0-387-96036-8.
  • Scorpan, A. (2005), The wild world of 4-manifolds, Providence: American Mathematical Society, ISBN 0-8218-3749-4.