Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Welcome to the community hub built on top of the Universal differential equation Wikipedia article. Here, you can discuss, collect, and organize anything related to Universal differential equation. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Universal differential equation

A universal differential equation (UDE) is a non-trivial differential algebraic equation with the property that its solutions can approximate any continuous function on any interval of the real line to any desired level of accuracy.

Precisely, a (possibly implicit) differential equation is a UDE if for any continuous real-valued function and for any positive continuous function there exist a smooth solution of with for all .[1]

The existence of an UDE has been initially regarded as an analogue of the universal Turing machine for analog computers, because of a result of Shannon that identifies the outputs of the general purpose analog computer with the solutions of algebraic differential equations.[1] However, in contrast to universal Turing machines, UDEs do not dictate the evolution of a system, but rather sets out certain conditions that any evolution must fulfill.[2]

Examples

[edit]
  • Rubel found the first known UDE in 1981. It is given by the following implicit differential equation of fourth-order:[1][2]
  • Duffin obtained a family of UDEs given by:[3]
and , whose solutions are of class for n > 3.
, where n > 3.
  • Bournez and Pouly proved the existence of a fixed polynomial vector field p such that for any f and ε there exists some initial condition of the differential equation y' = p(y) that yields a unique and analytic solution satisfying |y(x) − f(x)| < ε(x) for all x in R.[2]

See also

[edit]

References

[edit]
[edit]
Add your contribution
Related Hubs