Hubbry Logo
search button
Sign in
Alexander's theorem
Alexander's theorem
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Alexander's theorem
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Alexander's theorem Wikipedia article. Here, you can discuss, collect, and organize anything related to Alexander's theorem. The purpose of the hub is to c...
Add your contribution
Alexander's theorem
This is a typical element of the braid group, which is used in the mathematical field of knot theory.

In mathematics Alexander's theorem states that every knot or link can be represented as a closed braid; that is, a braid in which the corresponding ends of the strings are connected in pairs. The theorem is named after James Waddell Alexander II, who published a proof in 1923.[1]

Braids were first considered as a tool of knot theory by Alexander. His theorem gives a positive answer to the question Is it always possible to transform a given knot into a closed braid? A good construction example is found in Colin Adams's book.[2]

However, the correspondence between knots and braids is clearly not one-to-one: a knot may have many braid representations. For example, conjugate braids yield equivalent knots. This leads to a second fundamental question: Which closed braids represent the same knot type? This question is addressed in Markov's theorem, which gives ‘moves’ relating any two closed braids that represent the same knot.

References

[edit]
  1. ^ Alexander, James (1923). "A lemma on a system of knotted curves". Proceedings of the National Academy of Sciences of the United States of America. 9 (3): 93–95. Bibcode:1923PNAS....9...93A. doi:10.1073/pnas.9.3.93. PMC 1085274. PMID 16576674.
  2. ^ Adams, Colin C. (2004). The Knot Book. Revised reprint of the 1994 original. Providence, RI: American Mathematical Society. p. 130. ISBN 0-8218-3678-1. MR 2079925.