Hubbry Logo
search button
Sign in
Kauffman polynomial
Kauffman polynomial
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Kauffman polynomial
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Kauffman polynomial Wikipedia article. Here, you can discuss, collect, and organize anything related to Kauffman polynomial. The purpose of the hub is to c...
Add your contribution
Kauffman polynomial

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman.[1] It is initially defined on a link diagram as

,

where is the writhe of the link diagram and is a polynomial in a and z defined on link diagrams by the following properties:

  • (O is the unknot).
  • L is unchanged under type II and III Reidemeister moves.

Here is a strand and (resp. ) is the same strand with a right-handed (resp. left-handed) curl added (using a type I Reidemeister move).

Additionally L must satisfy Kauffman's skein relation:

The pictures represent the L polynomial of the diagrams which differ inside a disc as shown but are identical outside.

Kauffman showed that L exists and is a regular isotopy invariant of unoriented links. It follows easily that F is an ambient isotopy invariant of oriented links.

The Jones polynomial is a special case of the Kauffman polynomial, as the L polynomial specializes to the bracket polynomial. The Kauffman polynomial is related to Chern–Simons gauge theories for SO(N) in the same way that the HOMFLY polynomial is related to Chern–Simons gauge theories for SU(N).[2]

References

[edit]
  1. ^ Kauffman, Louis (1990). "An invariant of regular isotopy" (PDF). Transactions of the American Mathematical Society. 318 (2): 417–471. doi:10.1090/S0002-9947-1990-0958895-7. MR 0958895.
  2. ^ Witten, Edward (1989). "Quantum field theory and the Jones polynomial". Communications in Mathematical Physics. 121 (3): 351–399. Bibcode:1989CMaPh.121..351W. doi:10.1007/BF01217730. MR 0990772.

Further reading

[edit]
[edit]