Hubbry Logo
search button
Sign in
Almgren regularity theorem
Almgren regularity theorem
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Almgren regularity theorem
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Almgren regularity theorem Wikipedia article. Here, you can discuss, collect, and organize anything related to Almgren regularity theorem. The purpose of t...
Add your contribution
Almgren regularity theorem

In geometric measure theory, a field of mathematics, the Almgren regularity theorem, proved by Almgren (1983, 2000), states that the singular set of a mass-minimizing surface has codimension at least 2. Almgren's proof of this was 955 pages long. Within the proof many new ideas are introduced, such as monotonicity of a frequency function and the use of a center manifold to perform a more intricate blow-up procedure.

A streamlined and more accessible proof of Almgren's regularity theorem, following the same ideas as Almgren, was given by Camillo De Lellis and Emanuele Spadaro in a series of three papers.[1]

References

[edit]
  1. ^ De Lellis, Camillo; Spadaro, Emanuele Regularity of area minimizing currents III: blow-up. Ann. of Math. (2) 183 (2016), no. 2, 577–617.
  • Almgren, F. J. (1983), "Q valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two", Bulletin of the American Mathematical Society, New Series, 8 (2): 327–328, doi:10.1090/S0273-0979-1983-15106-6, ISSN 0002-9904, MR 0684900
  • Almgren, Frederick J. Jr. (2000), Taylor, Jean E.; Scheffer, Vladimir (eds.), Almgren's big regularity paper. Q-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Scientific Monograph Series in Mathematics, vol. 1, River Edge, NJ: World Scientific, ISBN 978-981-02-4108-7, MR 1777737, Zbl 0985.49001
  • Chang, Sheldon X. (1998), "On Almgren's regularity result", The Journal of Geometric Analysis, 8 (5): 703–708, doi:10.1007/BF02922666, ISSN 1050-6926, MR 1731058, S2CID 120598029
  • White, Brian (1998), "The mathematics of F. J. Almgren, Jr", The Journal of Geometric Analysis, 8 (5): 681–702, CiteSeerX 10.1.1.120.4639, doi:10.1007/BF02922665, ISSN 1050-6926, MR 1731057, S2CID 122083638