Hubbry Logo
search button
Sign in
Complete (complexity)
Complete (complexity)
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Complete (complexity)
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Complete (complexity) Wikipedia article. Here, you can discuss, collect, and organize anything related to Complete (complexity). The purpose of the hub is ...
Add your contribution
Complete (complexity)

In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.

More formally, a problem p is called hard for a complexity class C under a given type of reduction if there exists a reduction (of the given type) from any problem in C to p. If a problem is both hard for the class and a member of the class, it is complete for that class (for that type of reduction).

A problem that is complete for a class C is said to be C-complete, and the class of all problems complete for C is denoted C-complete. The first complete class to be defined and the most well known is NP-complete, a class that contains many difficult-to-solve problems that arise in practice. Similarly, a problem hard for a class C is called C-hard, e.g. NP-hard.

Normally, it is assumed that the reduction in question does not have higher computational complexity than the class itself. Therefore, it may be said that if a C-complete problem has a "computationally easy" solution, then all problems in "C" have an "easy" solution.

Generally, complexity classes that have a recursive enumeration have known complete problems, whereas classes that lack a recursive enumeration have none. For example, NP, co-NP, PLS, PPA all have known natural complete problems.

There are classes without complete problems. For example, Sipser showed that there is a language M such that BPPM (BPP with oracle M) has no complete problems.[1]

References

[edit]
  1. ^ Sipser, Michael (1982). "On relativization and the existence of complete sets". Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 140. pp. 523–531. doi:10.1007/BFb0012797. ISBN 978-3-540-11576-2.