Hubbry Logo
search button
Sign in
Imaginary line (mathematics)
Imaginary line (mathematics)
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Imaginary line (mathematics)
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Imaginary line (mathematics) Wikipedia article. Here, you can discuss, collect, and organize anything related to Imaginary line (mathematics). The purpose ...
Add your contribution
Imaginary line (mathematics)

In complex geometry, an imaginary line is a straight line that only contains one real point. It can be proven that this point is the intersection point with the conjugated line.[1]

It is a special case of an imaginary curve.

An imaginary line is found in the complex projective plane P2(C) where points are represented by three homogeneous coordinates

Boyd Patterson described the lines in this plane:[2]

The locus of points whose coordinates satisfy a homogeneous linear equation with complex coefficients
is a straight line and the line is real or imaginary according as the coefficients of its equation are or are not proportional to three real numbers.

Felix Klein described imaginary geometrical structures: "We will characterize a geometric structure as imaginary if its coordinates are not all real.:[3]

According to Hatton:[4]

The locus of the double points (imaginary) of the overlapping involutions in which an overlapping involution pencil (real) is cut by real transversals is a pair of imaginary straight lines.

Hatton continues,

Hence it follows that an imaginary straight line is determined by an imaginary point, which is a double point of an involution, and a real point, the vertex of the involution pencil.

See also

[edit]

References

[edit]
  1. ^ Patterson, B. C. (1941), "The inversive plane", The American Mathematical Monthly, 48: 589–599, doi:10.2307/2303867, MR 0006034.
  2. ^ Patterson 590
  3. ^ Klein 1928 p 46
  4. ^ Hatton 1929 page 13, Definition 4

Citations

[edit]