Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Index set (computability)
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Index set (computability) Wikipedia article. Here, you can discuss, collect, and organize anything related to Index set (computability). The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Index set (computability)

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

Definition

[edit]

Let be a computable enumeration of all partial computable functions, and be a computable enumeration of all c.e. sets.

Let be a class of partial computable functions. If then is the index set of . In general is an index set if for every with (i.e. they index the same function), we have . Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.

Index sets and Rice's theorem

[edit]

Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:

Let be a class of partial computable functions with its index set . Then is computable if and only if is empty, or is all of .

Rice's theorem says "any nontrivial property of partial computable functions is undecidable".[1]

Completeness in the arithmetical hierarchy

[edit]

Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a set is -complete if, for every set , there is an m-reduction from to . -completeness is defined similarly. Here are some examples:[2]

  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete, where is the halting problem.

Empirically, if the "most obvious" definition of a set is [resp. ], we can usually show that is -complete [resp. -complete].

Notes

[edit]

References

[edit]
Add your contribution
Related Hubs