Hubbry Logo
search button
Sign in
Johnson bound
Johnson bound
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Johnson bound
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Johnson bound Wikipedia article. Here, you can discuss, collect, and organize anything related to Johnson bound. The purpose of the hub is to connect peopl...
Add your contribution
Johnson bound

In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.

Definition

[edit]

Let be a q-ary code of length , i.e. a subset of . Let be the minimum distance of , i.e.

where is the Hamming distance between and .

Let be the set of all q-ary codes with length and minimum distance and let denote the set of codes in such that every element has exactly nonzero entries.

Denote by the number of elements in . Then, we define to be the largest size of a code with length and minimum distance :

Similarly, we define to be the largest size of a code in :

Theorem 1 (Johnson bound for ):

If ,

If ,

Theorem 2 (Johnson bound for ):

(i) If

(ii) If , then define the variable as follows. If is even, then define through the relation ; if is odd, define through the relation . Let . Then,

where is the floor function.

Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on .

See also

[edit]

References

[edit]
  • Johnson, Selmer Martin (April 1962). "A new upper bound for error-correcting codes". IRE Transactions on Information Theory: 203–207.
  • Huffman, William Cary; Pless, Vera S. (2003). Fundamentals of Error-Correcting Codes. Cambridge University Press. ISBN 978-0-521-78280-7.