Hubbry Logo
search button
Sign in
Large-signal model
Large-signal model
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Large-signal model
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Large-signal model Wikipedia article. Here, you can discuss, collect, and organize anything related to Large-signal model. The purpose of the hub is to con...
Add your contribution
Large-signal model

Large-signal modeling is a common analysis method used in electronic engineering to describe nonlinear devices in terms of the underlying nonlinear equations. In circuits containing nonlinear elements such as transistors, diodes, and vacuum tubes, under "large signal conditions", AC signals have high enough magnitude that nonlinear effects must be considered.[1]

"Large signal" is the opposite of "small signal". Small signal means that the circuit can be reduced to a linearized equivalent circuit around its operating point with sufficient accuracy.

Differences between Small Signal and Large Signal

[edit]

A small signal model takes a circuit and based on an operating point (bias) and linearizes all the components. Nothing changes because the assumption is that the signal is so small that the operating point (gain, capacitance, etc.) doesn't change.

A large signal model, on the other hand, takes into account the fact that the large signal actually affects the operating point, as well as that elements are non-linear and circuits can be limited by power supply values to avoid variation in operating point. A small signal model ignores simultaneous variations in the gain and supply values.

Large Signal Models (LSMs) in Artificial Intelligence

[edit]

In the domain of artificial (machine) intelligence, Large Signal Models enable human-centric interactions and knowledge discovery of signal data similar to how prompts allow users to query an LLM based on unstructured text from the web. Users can ask general questions about relationships between the focus dataset and results from pre-compiled LSTM built on a signal dataset across a large range of domains. This is achieved by layering in latent pattern detection and knowledge graph-based (KG-based) explainability into an LSTM inference pipeline.

See also

[edit]

References

[edit]
  1. ^ Snowden, Christopher M.; Miles, Robert E. (2012-12-06). Compound Semiconductor Device Modelling. Springer Science & Business Media. p. 170. ISBN 978-1-4471-2048-3.