Hubbry Logo
search button
Sign in
Partition topology
Partition topology
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Partition topology
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Partition topology Wikipedia article. Here, you can discuss, collect, and organize anything related to Partition topology. The purpose of the hub is to con...
Add your contribution
Partition topology

In mathematics, a partition topology is a topology that can be induced on any set by partitioning into disjoint subsets these subsets form the basis for the topology. There are two important examples which have their own names:

  • The odd–even topology is the topology where and Equivalently,
  • The deleted integer topology is defined by letting and

The trivial partitions yield the discrete topology (each point of is a set in so ) or indiscrete topology (the entire set is in so ).

Any set with a partition topology generated by a partition can be viewed as a pseudometric space with a pseudometric given by:

This is not a metric unless yields the discrete topology.

The partition topology provides an important example of the independence of various separation axioms. Unless is trivial, at least one set in contains more than one point, and the elements of this set are topologically indistinguishable: the topology does not separate points. Hence is not a Kolmogorov space, nor a T1 space, a Hausdorff space or an Urysohn space. In a partition topology the complement of every open set is also open, and therefore a set is open if and only if it is closed. Therefore, is regular, completely regular, normal and completely normal. is the discrete topology.

See also

[edit]

References

[edit]
  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446