Hubbry Logo
search button
Sign in
Quantum invariant
Quantum invariant
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Quantum invariant
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Quantum invariant Wikipedia article. Here, you can discuss, collect, and organize anything related to Quantum invariant. The purpose of the hub is to conne...
Add your contribution
Quantum invariant

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1][2][3]

List of invariants

[edit]

See also

[edit]

References

[edit]
  1. ^ a b Reshetikhin, N.; Turaev, V. G. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Inventiones Mathematicae. 103 (3): 547–597. doi:10.1007/BF01239527. MR 1091619.
  2. ^ Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
  3. ^ Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
  4. ^ Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
  5. ^ Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
  6. ^ Petit, Jerome (1999). "The invariant of Turaev-Viro from Group category" (PDF). hal.archives-ouvertes.fr. Retrieved 2019-11-04.
  7. ^ Lawton, Sean (June 28, 2007). "Generators of -Character Varieties of Arbitrary Rank Free Groups" (PDF). The 7th KAIST Geometric Topology Fair. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022.

Further reading

[edit]
[edit]