Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Quantum singular value transformation
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Quantum singular value transformation Wikipedia article. Here, you can discuss, collect, and organize anything related to Quantum singular value transformation. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Quantum singular value transformation

Quantum singular value transformation is a framework for designing quantum algorithms. It encompasses a variety of quantum algorithms for problems that can be solved with linear algebra, including Hamiltonian simulation, search problems, and linear system solving.[1][2][3] It was introduced in 2018 by András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe, generalizing algorithms for Hamiltonian simulation of Guang Hao Low and Isaac Chuang inspired by signal processing.[4]

High-level description

[edit]

The basic primitive of quantum singular value transformation is the block-encoding. A quantum circuit is a block-encoding of a matrix A if it implements a unitary matrix U such that U contains A in a specified sub-matrix. For example, if , then U is a block-encoding of A.

The fundamental algorithm of QSVT is one that converts a block-encoding of A to a block-encoding of , where p is a polynomial of degree d and denotes the conjugate transpose, with only d applications of the circuit and one ancilla qubit. This can be done for a large class of polynomials p which correspond to applying a polynomial to the singular values of A, giving a "singular value transformation".

A variant of this algorithm can also be performed when A is Hermitian, corresponding to an "eigenvalue transformation". That is, given a block-encoding of A with eigendecomposition of a matrix , one can get a block-encoding for , provided p is bounded.[4]

Algorithm

[edit]
Input: A matrix whose singular value decomposition is where are the singular values of A
Input: A polynomial
Output: A unitary where has been applied to the singular values of :
  1. Prepare a unitary that encodes on the top left side of , that is
  2. Initialize an qubit state
  3. If the polynomial is odd, apply to
  4. If the polynomial is even apply to

[2]

References

[edit]

See also

[edit]
[edit]
Add your contribution
Related Hubs