Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Rees factor semigroup
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Rees factor semigroup Wikipedia article. Here, you can discuss, collect, and organize anything related to Rees factor semigroup. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Rees factor semigroup

In mathematics, in semigroup theory, a Rees factor semigroup (also called Rees quotient semigroup or just Rees factor), named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup.

Let S be a semigroup and I be an ideal of S. Using S and I one can construct a new semigroup by collapsing I into a single element while the elements of S outside of I retain their identity. The new semigroup obtained in this way is called the Rees factor semigroup of S modulo I and is denoted by S/I.

The concept of Rees factor semigroup was introduced by David Rees in 1940.[1][2]

Formal definition

[edit]

A subset of a semigroup is called an ideal of if both and are subsets of (where , and similarly for ). Let be an ideal of a semigroup . The relation in defined by

x ρ y  ⇔  either x = y or both x and y are in I

is an equivalence relation in . The equivalence classes under are the singleton sets with not in and the set . Since is an ideal of , the relation is a congruence on .[3] The quotient semigroup is, by definition, the Rees factor semigroup of modulo . For notational convenience the semigroup is also denoted as . The Rees factor semigroup[4] has underlying set , where is a new element and the product (here denoted by ) is defined by

The congruence on as defined above is called the Rees congruence on modulo .

Example

[edit]

Consider the semigroup S = { a, b, c, d, e } with the binary operation defined by the following Cayley table:

· a b c d e
  a   a   a   a   d   d
  b   a   b   c   d   d
  c   a   c   b   d   d
  d   d   d   d   a   a
  e   d   e   e   a   a

Let I = { a, d } which is a subset of S. Since

SI = { aa, ba, ca, da, ea, ad, bd, cd, dd, ed } = { a, d } ⊆ I
IS = { aa, da, ab, db, ac, dc, ad, dd, ae, de } = { a, d } ⊆ I

the set I is an ideal of S. The Rees factor semigroup of S modulo I is the set S/I = { b, c, e, I } with the binary operation defined by the following Cayley table:

· b c e I
  b   b   c   I   I
  c   c   b   I   I
  e   e   e   I   I
  I   I   I   I   I

Ideal extension

[edit]

A semigroup S is called an ideal extension of a semigroup A by a semigroup B if A is an ideal of S and the Rees factor semigroup S/A is isomorphic to B. [5]

Some of the cases that have been studied extensively include: ideal extensions of completely simple semigroups, of a group by a completely 0-simple semigroup, of a commutative semigroup with cancellation by a group with added zero. In general, the problem of describing all ideal extensions of a semigroup is still open.[6]

References

[edit]
Add your contribution
Related Hubs