Hubbry Logo
search button
Sign in
Robbins algebra
Robbins algebra
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Robbins algebra
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Robbins algebra Wikipedia article. Here, you can discuss, collect, and organize anything related to Robbins algebra. The purpose of the hub is to connect p...
Add your contribution
Robbins algebra

In abstract algebra, a Robbins algebra is an algebra containing a single binary operation, usually denoted by , and a single unary operation usually denoted by satisfying the following axioms:

For all elements a, b, and c:

  1. Associativity:
  2. Commutativity:
  3. Robbins equation:

For many years, it was conjectured, but unproven, that all Robbins algebras are Boolean algebras. This was proved in 1996, so the term "Robbins algebra" is now simply a synonym for "Boolean algebra".

History

[edit]

In 1933, Edward Huntington proposed a new set of axioms for Boolean algebras, consisting of (1) and (2) above, plus:

  • Huntington's equation:

From these axioms, Huntington derived the usual axioms of Boolean algebra.

Very soon thereafter, Herbert Robbins posed the Robbins conjecture, namely that the Huntington equation could be replaced with what came to be called the Robbins equation, and the result would still be Boolean algebra. would interpret Boolean join and Boolean complement. Boolean meet and the constants 0 and 1 are easily defined from the Robbins algebra primitives. Pending verification of the conjecture, the system of Robbins was called "Robbins algebra."

Verifying the Robbins conjecture required proving Huntington's equation, or some other axiomatization of a Boolean algebra, as theorems of a Robbins algebra. Huntington, Robbins, Alfred Tarski, and others worked on the problem, but failed to find a proof or counterexample.

William McCune proved the conjecture in 1996, using the automated theorem prover EQP. For a complete proof of the Robbins conjecture in one consistent notation and following McCune closely, see Mann (2003). Dahn (1998) simplified McCune's machine proof.

See also

[edit]

References

[edit]