Welcome to the community hub built on top of the Second continuum hypothesis Wikipedia article.
Here, you can discuss, collect, and organize anything related to Second continuum hypothesis. The
purpose of...
The second continuum hypothesis, also called Luzin's hypothesis or Luzin's second continuum hypothesis, is the hypothesis that . It is the negation of a weakened form, , of the Continuum Hypothesis (CH). It was discussed by Nikolai Luzin in 1935, although he did not claim to be the first to postulate it.[note 1][2][3]: 157, 171 [4]: §3 [1]: 130–131 The statement may also be called Luzin's hypothesis.[2]
The second continuum hypothesis is independent of Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC): its truth is consistent with ZFC since it is true in Cohen's model of ZFC with the negation of the Continuum Hypothesis;[5][6]: 109–110 its falsity is also consistent since it is contradicted by the Continuum Hypothesis, which follows from V=L. It is implied by Martin's Axiom together with the negation of the CH.[2]
^He didn't know who was the first: "Nous ne chercherons pas à donner le nom de l'auteur qui a conçu le premier la sériuse possibilité d'une telle hypothèse du continu..." [1]: 130
^"Introductory note to 1947 and 1964", Gregory H. Moore, pp. 154-175, in Kurt Gödel: Collected Works: Volume II: Publications 1938-1974,
Kurt Gödel, eds. S. Feferman, John W. Dawson, Jr., Stephen C. Kleene, G. Moore, R. Solovay, and Jean van Heijenoort, eds., New York, Oxford: Oxford University Press, 1990, ISBN0-19-503972-6.
^"History of the Continuum in the 20th Century", Juris Steprāns, pp. 73-144, in Handbook of the History of Logic: Volume 6: Sets and Extensions in the Twentieth Century, eds. Dov M. Gabbay, Akihiro Kanamori, John Woods, Amsterdam, etc.: Elsevier, 2012, ISBN978-0-444-51621-3.