Hubbry Logo
search button
Sign in
Warren Abstract Machine
Warren Abstract Machine
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Warren Abstract Machine
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Warren Abstract Machine Wikipedia article. Here, you can discuss, collect, and organize anything related to Warren Abstract Machine. The purpose of the hub...
Add your contribution
Warren Abstract Machine

In 1983, David H. D. Warren designed an abstract machine for the execution of Prolog consisting of a memory architecture and an instruction set.[1][2][3] This design became known as the Warren Abstract Machine (WAM) and has become the de facto standard target for Prolog compilers.

Purpose

[edit]

The purpose of compiling Prolog code to the more low-level WAM code is to make subsequent interpretation of the Prolog program more efficient. Prolog code is reasonably easy to translate to WAM instructions, which can be more efficiently interpreted. Also, subsequent code improvements and compilations to native code are often easier to perform on the more low-level representation.

In order to write efficient Prolog programs, a basic understanding of how the WAM works can be advantageous. Some of the most important WAM concepts are first argument indexing and its relation to choice-points, tail call optimization, and memory reclamation on failure.

Memory areas

[edit]

The WAM has the following memory areas:

  • The global stack or heap, used to store compound terms
  • The local stack for environment frames and choice-points
  • The trail to record which variables bindings ought to be undone on backtracking

Example

[edit]

Here is a piece of Prolog code:

 girl(sally).
 girl(jane).
 
 boy(B) :- \+ girl(B).

A WAM-based Prolog compiler will compile this into WAM instructions similar to the following:

 predicate(girl/1):
    switch_on_term(2,1,fail,fail,fail),
 label(1): switch_on_atom([(sally,3),(jane,5)])
 label(2): try_me_else(4)
 label(3): get_atom(sally,0)
           proceed
 label(4): trust_me_else_fail
 label(5): get_atom(jane,0)
           proceed
 
 predicate(boy/1):
    get_variable(x(1),0)
    put_structure(girl/1,0)
    unify_local_value(x(1))
    execute((\+)/1)])

An important characteristic of this code is its ability to cope with the various modes in which the predicates can be evoked: any argument might be a variable, a ground term, or a partly instantiated term. The "switch" instructions handle the different cases.

References

[edit]
  1. ^ David H. D. Warren (October 1983). An abstract Prolog instruction set (PDF). Menlo Park, CA, USA: Artificial Intelligence Center at SRI International. Archived (PDF) from the original on 2022-06-19.
  2. ^ Hassan Aït-Kaci (February 18, 1999). Warren's Abstract Machine: A Tutorial Reconstruction (PDF). Archived from the original on 2003-02-13.
  3. ^ Hassan Aït-Kaci. "Warren's Abstract Machine: A Tutorial Reconstruction; the book, errata and slides". Archived from the original on 19 January 2022. Retrieved 7 March 2011.