Hubbry Logo
search button
Sign in
Closed testing procedure
Closed testing procedure
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Closed testing procedure
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Closed testing procedure Wikipedia article. Here, you can discuss, collect, and organize anything related to Closed testing procedure. The purpose of the h...
Add your contribution
Closed testing procedure

In statistics, the closed testing procedure[1] is a general method for performing more than one hypothesis test simultaneously.

The closed testing principle

[edit]

Suppose there are k hypotheses H1,..., Hk to be tested and the overall type I error rate is α. The closed testing principle allows the rejection of any one of these elementary hypotheses, say Hi, if all possible intersection hypotheses involving Hi can be rejected by using valid local level α tests; the adjusted p-value is the largest among those hypotheses. It controls the family-wise error rate for all the k hypotheses at level α in the strong sense.

Example

[edit]

Suppose there are three hypotheses H1,H2, and H3 to be tested and the overall type I error rate is 0.05. Then H1 can be rejected at level α if H1H2H3, H1H2, H1H3 and H1 can all be rejected using valid tests with α = 0.05.

Special cases

[edit]

The Holm–Bonferroni method is a special case of a closed test procedure for which each intersection null hypothesis is tested using the simple Bonferroni test. As such, it controls the family-wise error rate for all the k hypotheses at level α in the strong sense.

Multiple test procedures developed using the graphical approach for constructing and illustrating multiple test procedures[2] are a subclass of closed testing procedures.

See also

[edit]

References

[edit]
  1. ^ Marcus, R; Peritz, E; Gabriel, KR (1976). "On closed testing procedures with special reference to ordered analysis of variance". Biometrika. 63 (3): 655–660. doi:10.1093/biomet/63.3.655. JSTOR 2335748.
  2. ^ Bretz, F; Maurer, W; Brannath, W; Posch, M (2009). "A graphical approach to sequentially rejective multiple test procedures". Stat Med. 28 (4): 586–604. doi:10.1002/sim.3495. S2CID 12068118.