Welcome to the community hub built on top of the Erdős distinct distances problem Wikipedia article.
Here, you can discuss, collect, and organize anything related to Erdős distinct distances problem. The
...
In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946[1][2] and almost proven by Larry Guth and Nets Katz in 2015.[3][4][5]
In what follows let g(n) denote the minimal number of distinct distances between n points in the plane, or equivalently the smallest possible cardinality of their distance set. In his 1946 paper, Erdős proved the estimates
for some constant . The lower bound was given by an easy argument. The upper bound is given by a square grid. For such a grid, there are numbers below n which are sums of two squares, expressed in big O notation; see Landau–Ramanujan constant. Erdős conjectured that the upper bound was closer to the true value of g(n), and specifically that (using big Omega notation) holds for every c < 1.
Erdős also considered the higher-dimensional variant of the problem: for let denote the minimal possible number of distinct distances among points in -dimensional Euclidean space. He proved that and and conjectured that the upper bound is in fact sharp, i.e., . József Solymosi and Van H. Vu obtained the lower bound in 2008.[13]
^Katz, Nets Hawk; Tardos, Gábor (2004). "A new entropy inequality for the Erdős distance problem". In Pach, János (ed.). Towards a theory of geometric graphs. Contemporary Mathematics. Vol. 342. Providence, RI: American Mathematical Society. pp. 119–126. doi:10.1090/conm/342/06136. ISBN978-0-8218-3484-8. MR2065258.