Hubbry Logo
search button
Sign in
Reciprocal length
Reciprocal length
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Reciprocal length
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Reciprocal length Wikipedia article. Here, you can discuss, collect, and organize anything related to Reciprocal length. The purpose of the hub is to conne...
Add your contribution
Reciprocal length

Reciprocal length or inverse length is a quantity or measurement used in several branches of science and mathematics, defined as the reciprocal of length.

Common units used for this measurement include the reciprocal metre or inverse metre (symbol: m−1), and the reciprocal centimetre or inverse centimetre (symbol: cm−1). In optics, the dioptre is a unit equivalent to reciprocal metre.

List of quantities

[edit]

Quantities measured in reciprocal length include:

Measure of energy

[edit]

In some branches of physics, a set of natural units is adopted, such that the universal constants c, the speed of light, and ħ, the reduced Planck constant, are treated as being unity (i.e. that c = ħ = 1), which leads to mass, energy, momentum, frequency and reciprocal length all having the same unit. As a result, reciprocal length is used as a measure of energy. The frequency of a photon yields a certain photon energy, according to the Planck–Einstein relation, and the frequency of a photon is related to its spatial frequency via the speed of light. Spatial frequency is a reciprocal length, which can thus be used as a measure of energy, usually of a particle. For example, the reciprocal centimetre, cm−1, is an energy unit equal to the energy of a photon with a wavelength of 1 cm. That energy amounts to approximately 1.24×10−4 eV or 1.986×10−23 J.

The energy is inversely proportional to the size of the unit of which the reciprocal is used, and is proportional to the number of reciprocal length units. For example, in terms of energy, one reciprocal metre equals 10−2 (one hundredth) as much as a reciprocal centimetre. Five reciprocal metres are five times as much energy as one reciprocal metre.

See also

[edit]

Further reading

[edit]
  • Barrett, A. J. (11 July 1983). "A two-parameter perturbation series for the reciprocal length of polymer chains and subchains". Journal of Physics A: Mathematical and General. 16 (10): 2321–2330. Bibcode:1983JPhA...16.2321B. doi:10.1088/0305-4470/16/10/027.