Hubbry Logo
search button
Sign in
Killing spinor
Killing spinor
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Killing spinor
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Killing spinor Wikipedia article. Here, you can discuss, collect, and organize anything related to Killing spinor. The purpose of the hub is to connect peo...
Add your contribution
Killing spinor

Killing spinor is a term used in mathematics and physics.

Definition

[edit]

By the more narrow definition, commonly used in mathematics, the term Killing spinor indicates those twistor spinors which are also eigenspinors of the Dirac operator.[1][2][3] The term is named after Wilhelm Killing.

Another equivalent definition is that Killing spinors are the solutions to the Killing equation for a so-called Killing number.

More formally:[4]

A Killing spinor on a Riemannian spin manifold M is a spinor field which satisfies
for all tangent vectors X, where is the spinor covariant derivative, is Clifford multiplication and is a constant, called the Killing number of . If then the spinor is called a parallel spinor.

Applications

[edit]

In physics, Killing spinors are used in supergravity and superstring theory, in particular for finding solutions which preserve some supersymmetry. They are a special kind of spinor field related to Killing vector fields and Killing tensors.

Properties

[edit]

If is a manifold with a Killing spinor, then is an Einstein manifold with Ricci curvature , where is the Killing constant.[5]

Types of Killing spinor fields

[edit]

If is purely imaginary, then is a noncompact manifold; if is 0, then the spinor field is parallel; finally, if is real, then is compact, and the spinor field is called a ``real spinor field."

References

[edit]
  1. ^ Th. Friedrich (1980). "Der erste Eigenwert des Dirac Operators einer kompakten, Riemannschen Mannigfaltigkei nichtnegativer Skalarkrümmung". Mathematische Nachrichten. 97: 117–146. doi:10.1002/mana.19800970111.
  2. ^ Th. Friedrich (1989). "On the conformal relation between twistors and Killing spinors". Supplemento dei Rendiconti del Circolo Matematico di Palermo, Serie II. 22: 59–75.
  3. ^ A. Lichnerowicz (1987). "Spin manifolds, Killing spinors and the universality of Hijazi inequality". Lett. Math. Phys. 13 (4): 331–334. Bibcode:1987LMaPh..13..331L. doi:10.1007/bf00401162. S2CID 121971999.
  4. ^ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, pp. 116–117, ISBN 978-0-8218-2055-1
  5. ^ Bär, Christian (1993-06-01). "Real Killing spinors and holonomy". Communications in Mathematical Physics. 154 (3): 509–521. Bibcode:1993CMaPh.154..509B. doi:10.1007/BF02102106. ISSN 1432-0916.

Books

[edit]
[edit]