Hubbry Logo
search button
Sign in
Particle physics in cosmology
Particle physics in cosmology
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Particle physics in cosmology
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Particle physics in cosmology Wikipedia article. Here, you can discuss, collect, and organize anything related to Particle physics in cosmology. The purpos...
Add your contribution
Particle physics in cosmology

Particle physics is the study of the interactions of elementary particles at high energies, whilst physical cosmology studies the universe as a single physical entity. The interface between these two fields is sometimes referred to as particle cosmology. Particle physics must be taken into account in cosmological models of the early universe, when the average energy density was very high. The processes of particle pair production, scattering and decay influence the cosmology.

As a rough approximation, a particle scattering or decay process is important at a particular cosmological epoch if its time scale is shorter than or similar to the time scale of the universe's expansion. The latter quantity is where is the time-dependent Hubble parameter. This is roughly equal to the age of the universe at that time.

For example, the pion has a mean lifetime to decay of about 26 nanoseconds. This means that particle physics processes involving pion decay can be neglected until roughly that much time has passed since the Big Bang.

Cosmological observations of phenomena such as the cosmic microwave background and the cosmic abundance of elements, together with the predictions of the Standard Model of particle physics, place constraints on the physical conditions in the early universe. The success of the Standard Model at explaining these observations support its validity under conditions beyond those which can be produced in a laboratory. Conversely, phenomena discovered through cosmological observations, such as dark matter and baryon asymmetry, suggest the presence of physics that goes beyond the Standard Model.

Further reading

[edit]
  • Allday, Jonathan (2002). Quarks, Leptons and the Big Bang (Second ed.). Taylor & Francis. ISBN 978-0-7503-0806-9.
  • Bergström, Lars & Goobar, Ariel (2004); Cosmology and Particle Astrophysics, 2nd ed. Springer Verlag. ISBN 3-540-43128-4.
  • Branco, G. C., Shafi, Q., & Silva-Marcos, J. I. (2001). Recent developments in particle physics and cosmology. Dordrecht: Kluwer Academic. ISBN 0-7923-7181-X
  • Collins, P. D. B. (2007). Particle physics and cosmology. New York: John Wiley & Sons. ISBN 0-471-12071-5
  • Kazakov, D. I., & Smadja, G. (2005). Particle physics and cosmology the interface. NATO science series, v. 188. Dordecht: Springer. ISBN 1-4020-3161-0
  • "Science and technology - Cosmology and particle physics - What can the matter B?". The Economist. Vol. 379, no. 8474. 2006. p. 94. OCLC 102695447.
[edit]