Hubbry Logo
search button
Sign in
Prime signature
Prime signature
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Prime signature
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Prime signature Wikipedia article. Here, you can discuss, collect, and organize anything related to Prime signature. The purpose of the hub is to connect p...
Add your contribution
Prime signature

In mathematics, the prime signature of a number is the multiset of (nonzero) exponents of its prime factorization. The prime signature of a number having prime factorization is the multiset .

For example, all prime numbers have a prime signature of {1}, the squares of primes have a prime signature of {2}, the products of 2 distinct primes have a prime signature of {1, 1} and the products of a square of a prime and a different prime (e.g. 12, 18, 20, ...) have a prime signature of {2, 1}.

Properties

[edit]

The divisor function τ(n), the Möbius function μ(n), the number of distinct prime divisors ω(n) of n, the number of prime divisors Ω(n) of n, the indicator function of the squarefree integers, and many other important functions in number theory, are functions of the prime signature of n.

In particular, τ(n) equals the product of the incremented by 1 exponents from the prime signature of n. For example, 20 has prime signature {2,1} and so the number of divisors is (2+1) × (1+1) = 6. Indeed, there are six divisors: 1, 2, 4, 5, 10 and 20.

The smallest number of each prime signature is a product of primorials. The first few are:

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, ... (sequence A025487 in the OEIS).

A number cannot divide another unless its prime signature is included in the other numbers prime signature in the Young's lattice.

Numbers with same prime signature

[edit]
Signature Numbers OEIS ID Description
1 The number 1, as an empty product of primes
{1} 2, 3, 5, 7, 11, ... A000040 prime numbers
{2} 4, 9, 25, 49, 121, ... A001248 squares of prime numbers
{1, 1} 6, 10, 14, 15, 21, ... A006881 two distinct prime divisors (square-free semiprimes)
{3} 8, 27, 125, 343, ... A030078 cubes of prime numbers
{2, 1} 12, 18, 20, 28, ... A054753 squares of primes times another prime
{4} 16, 81, 625, 2401, ... A030514 fourth powers of prime numbers
{3, 1} 24, 40, 54, 56, ... A065036 cubes of primes times another prime
{1, 1, 1} 30, 42, 66, 70, ... A007304 three distinct prime divisors (sphenic numbers)
{5} 32, 243, 3125, ... A050997 fifth powers of primes
{2, 2} 36, 100, 196, 225, ... A085986 squares of square-free semiprimes

Sequences defined by their prime signature

[edit]

Given a number with prime signature S, it is

See also

[edit]

References

[edit]
[edit]