Recent from talks
All channels
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Welcome to the community hub built to collect knowledge and have discussions related to Principal root of unity.
Nothing was collected or created yet.
Principal root of unity
View on Wikipediafrom Wikipedia
This article relies largely or entirely on a single source. (May 2024) |
In mathematics, a principal n-th root of unity (where n is a positive integer) of a ring is an element satisfying the equations
In an integral domain, every primitive n-th root of unity is also a principal -th root of unity. In any ring, if n is a power of 2, then any n/2-th root of −1 is a principal n-th root of unity.
A non-example is in the ring of integers modulo ; while and thus is a cube root of unity, meaning that it is not a principal cube root of unity.
The significance of a root of unity being principal is that it is a necessary condition for the theory of the discrete Fourier transform to work out correctly.
References
[edit]- Bini, D.; Pan, V. (1994), Polynomial and Matrix Computations, vol. 1, Boston, MA: Birkhäuser, p. 11
