Hubbry Logo
search button
Sign in
Pseudo-Hadamard transform
Pseudo-Hadamard transform
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Pseudo-Hadamard transform
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Pseudo-Hadamard transform Wikipedia article. Here, you can discuss, collect, and organize anything related to Pseudo-Hadamard transform. The purpose of the...
Add your contribution
Pseudo-Hadamard transform

The pseudo-Hadamard transform is a reversible transformation of a bit string that provides cryptographic diffusion. See Hadamard transform.

The bit string must be of even length so that it can be split into two bit strings a and b of equal lengths, each of n bits. To compute the transform for Twofish algorithm, a' and b', from these we use the equations:

To reverse this, clearly:

On the other hand, the transformation for SAFER+ encryption is as follows:

Generalization

[edit]

The above equations can be expressed in matrix algebra, by considering a and b as two elements of a vector, and the transform itself as multiplication by a matrix of the form:

The inverse can then be derived by inverting the matrix.

However, the matrix can be generalised to higher dimensions, allowing vectors of any power-of-two size to be transformed, using the following recursive rule:

For example:

See also

[edit]

This is the Kronecker product of an Arnold Cat Map matrix with a Hadamard matrix.

References

[edit]
  • James Massey, "On the Optimality of SAFER+ Diffusion", 2nd AES Conference, 1999. [1]
  • Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, "Twofish: A 128-Bit Block Cipher", 1998. [2]
  • Helger Lipmaa. On Differential Properties of Pseudo-Hadamard Transform and Related Mappings. INDOCRYPT 2002, LNCS 2551, pp 48-61, 2002.[3]
[edit]