Hubbry Logo
search button
Sign in
Reduced residue system
Reduced residue system
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Reduced residue system
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Reduced residue system Wikipedia article. Here, you can discuss, collect, and organize anything related to Reduced residue system. The purpose of the hub i...
Add your contribution
Reduced residue system

In mathematics, a subset R of the integers is called a reduced residue system modulo n if:

  1. gcd(r, n) = 1 for each r in R,
  2. R contains φ(n) elements,
  3. no two elements of R are congruent modulo n.[1][2]

Here φ denotes Euler's totient function.

A reduced residue system modulo n can be formed from a complete residue system modulo n by removing all integers not relatively prime to n. For example, a complete residue system modulo 12 is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. The so-called totatives 1, 5, 7 and 11 are the only integers in this set which are relatively prime to 12, and so the corresponding reduced residue system modulo 12 is {1, 5, 7, 11}. The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced residue systems modulo 12 are:

  • {13,17,19,23}
  • {−11,−7,−5,−1}
  • {−7,−13,13,31}
  • {35,43,53,61}

Facts

[edit]
  • Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n.
  • A reduced residue system modulo n is a group under multiplication modulo n.
  • If {r1, r2, ... , rφ(n)} is a reduced residue system modulo n with n > 2, then .
  • If {r1, r2, ... , rφ(n)} is a reduced residue system modulo n, and a is an integer such that gcd(a, n) = 1, then {ar1, ar2, ... , arφ(n)} is also a reduced residue system modulo n.[3][4]

See also

[edit]

Notes

[edit]

References

[edit]
  • Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77171950
  • Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 71081766
[edit]