Hubbry Logo
search button
Sign in
Semiparametric model
Semiparametric model
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Semiparametric model
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Semiparametric model Wikipedia article. Here, you can discuss, collect, and organize anything related to Semiparametric model. The purpose of the hub is to...
Add your contribution
Semiparametric model

In statistics, a semiparametric model is a statistical model that has parametric and nonparametric components.

A statistical model is a parameterized family of distributions: indexed by a parameter .

  • A parametric model is a model in which the indexing parameter is a vector in -dimensional Euclidean space, for some nonnegative integer .[1] Thus, is finite-dimensional, and .
  • With a nonparametric model, the set of possible values of the parameter is a subset of some space , which is not necessarily finite-dimensional. For example, we might consider the set of all distributions with mean 0. Such spaces are vector spaces with topological structure, but may not be finite-dimensional as vector spaces. Thus, for some possibly infinite-dimensional space .
  • With a semiparametric model, the parameter has both a finite-dimensional component and an infinite-dimensional component (often a real-valued function defined on the real line). Thus, , where is an infinite-dimensional space.

It may appear at first that semiparametric models include nonparametric models, since they have an infinite-dimensional as well as a finite-dimensional component. However, a semiparametric model is considered to be "smaller" than a completely nonparametric model because we are often interested only in the finite-dimensional component of . That is, the infinite-dimensional component is regarded as a nuisance parameter.[2] In nonparametric models, by contrast, the primary interest is in estimating the infinite-dimensional parameter. Thus the estimation task is statistically harder in nonparametric models.

These models often use smoothing or kernels.

Example

[edit]

A well-known example of a semiparametric model is the Cox proportional hazards model.[3] If we are interested in studying the time to an event such as death due to cancer or failure of a light bulb, the Cox model specifies the following distribution function for :

where is the covariate vector, and and are unknown parameters. . Here is finite-dimensional and is of interest; is an unknown non-negative function of time (known as the baseline hazard function) and is often a nuisance parameter. The set of possible candidates for is infinite-dimensional.

See also

[edit]

Notes

[edit]
  1. ^ Bickel, P. J.; Klaassen, C. A. J.; Ritov, Y.; Wellner, J. A. (2006), "Semiparametrics", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
  2. ^ Oakes, D. (2006), "Semi-parametric models", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
  3. ^ Balakrishnan, N.; Rao, C. R. (2004). Handbook of Statistics 23: Advances in Survival Analysis. Elsevier. p. 126.

References

[edit]
  • Bickel, P. J.; Klaassen, C. A. J.; Ritov, Y.; Wellner, J. A. (1998), Efficient and Adaptive Estimation for Semiparametric Models, Springer
  • Härdle, Wolfgang; Müller, Marlene; Sperlich, Stefan; Werwatz, Axel (2004), Nonparametric and Semiparametric Models, Springer
  • Kosorok, Michael R. (2008), Introduction to Empirical Processes and Semiparametric Inference, Springer
  • Tsiatis, Anastasios A. (2006), Semiparametric Theory and Missing Data, Springer
  • Begun, Janet M.; Hall, W. J.; Huang, Wei-Min; Wellner, Jon A. (1983), "Information and asymptotic efficiency in parametric--nonparametric models", Annals of Statistics, 11 (1983), no. 2, 432--452