Hubbry Logo
search button
Sign in
Weingarten equations
Weingarten equations
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Weingarten equations
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Weingarten equations Wikipedia article. Here, you can discuss, collect, and organize anything related to Weingarten equations. The purpose of the hub is to...
Add your contribution
Weingarten equations

The Weingarten equations give the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of a point on the surface. These formulas were established in 1861 by the German mathematician Julius Weingarten.[1]

Statement in classical differential geometry

[edit]

Let S be a surface in three-dimensional Euclidean space that is parametrized by the position vector r(u, v). Let P = P(u, v) be a point on the surface. Then

are two tangent vectors at point P.

Let n(u, v) be the unit normal vector and let (E, F, G) and (L, M, N) be the coefficients of the first and second fundamental forms of this surface, respectively. The Weingarten equation gives the first derivative of the unit normal vector n at point P in terms of the tangent vectors ru and rv:

This can be expressed compactly in index notation as

,

where Kab are the components of the surface's second fundamental form (shape tensor).

Notes

[edit]
  1. ^ J. Weingarten (1861). "Ueber eine Klasse auf einander abwickelbarer Flächen". Journal für die Reine und Angewandte Mathematik. 59: 382–393.

References

[edit]