Hubbry Logo
search button
Sign in
Biconnected graph
Biconnected graph
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Biconnected graph
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Biconnected graph Wikipedia article. Here, you can discuss, collect, and organize anything related to Biconnected graph. The purpose of the hub is to conne...
Add your contribution
Biconnected graph

In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.

The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected.

This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection).

The use of biconnected graphs is very important in the field of networking (see Network flow), because of this property of redundancy.

Definition

[edit]

A biconnected undirected graph is a connected graph that is not broken into disconnected pieces by deleting any single vertex (and its incident edges).

A biconnected directed graph is one such that for any two vertices v and w there are two directed paths from v to w which have no vertices in common other than v and w.

Examples

[edit]
Nonseparable (or 2-connected) graphs (or blocks) with n nodes (sequence A002218 in the OEIS)
Vertices Number of Possibilities
1 0
2 1
3 1
4 3
5 10
6 56
7 468
8 7123
9 194066
10 9743542
11 900969091
12 153620333545
13 48432939150704
14 28361824488394169
15 30995890806033380784
16 63501635429109597504951
17 244852079292073376010411280
18 1783160594069429925952824734641
19 24603887051350945867492816663958981

Structure of 2-connected graphs

[edit]

Every 2-connected graph can be constructed inductively by adding paths to a cycle (Diestel 2016, p. 59).

See also

[edit]

References

[edit]
  • Eric W. Weisstein. "Biconnected Graph." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/BiconnectedGraph.html
  • Paul E. Black, "biconnected graph", in Dictionary of Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National Institute of Standards and Technology. 17 December 2004. (accessed TODAY) Available from: https://xlinux.nist.gov/dads/HTML/biconnectedGraph.html
  • Diestel, Reinhard (2016), Graph Theory (5th ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-662-53621-6.
[edit]