Hubbry Logo
search button
Sign in
Common subexpression elimination
Common subexpression elimination
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Common subexpression elimination
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Common subexpression elimination Wikipedia article. Here, you can discuss, collect, and organize anything related to Common subexpression elimination. The ...
Add your contribution
Common subexpression elimination

In compiler theory, common subexpression elimination (CSE) is a compiler optimization that searches for instances of identical expressions (i.e., they all evaluate to the same value), and analyzes whether it is worthwhile replacing them with a single variable holding the computed value.[1]

Example

[edit]

In the following code:

a = b * c + g;
d = b * c * e;

it may be worth transforming the code to:

tmp = b * c;
a = tmp + g;
d = tmp * e;

if the cost of storing and retrieving tmp is less than the cost of calculating b * c an extra time.

Principle

[edit]

The possibility to perform CSE is based on available expression analysis (a data flow analysis). An expression b*c is available at a point p in a program if:

  • every path from the initial node to p evaluates b*c before reaching p,
  • and there are no assignments to b or c after the evaluation but before p.

The cost/benefit analysis performed by an optimizer will calculate whether the cost of the store to tmp is less than the cost of the multiplication; in practice other factors such as which values are held in which registers are also significant.

Compiler writers distinguish two kinds of CSE:

  • local common subexpression elimination works within a single basic block
  • global common subexpression elimination works on an entire procedure,

Both kinds rely on data flow analysis of which expressions are available at which points in a program.

Benefits

[edit]

The benefits of performing CSE are great enough that it is a commonly used optimization.

In simple cases like in the example above, programmers may manually eliminate the duplicate expressions while writing the code. The greatest source of CSEs are intermediate code sequences generated by the compiler, such as for array indexing calculations, where it is not possible for the developer to manually intervene. In some cases language features may create many duplicate expressions. For instance, C macros, where macro expansions may result in common subexpressions not apparent in the original source code.

Compilers need to be judicious about the number of temporaries created to hold values. An excessive number of temporary values creates register pressure possibly resulting in spilling registers to memory, which may take longer than simply recomputing an arithmetic result when it is needed.

See also

[edit]

References

[edit]
  1. ^ Steven Muchnick; Muchnick and Associates (15 August 1997). Advanced Compiler Design Implementation. Morgan Kaufmann. ISBN 978-1-55860-320-2. Common subexpression elimination.