Hubbry Logo
search button
Sign in
Cyclic module
Cyclic module
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Cyclic module
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Cyclic module Wikipedia article. Here, you can discuss, collect, and organize anything related to Cyclic module. The purpose of the hub is to connect peopl...
Add your contribution
Cyclic module

In mathematics, more specifically in ring theory, a cyclic module or monogenous module[1] is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element.

Definition

[edit]

A left R-module M is called cyclic if M can be generated by a single element i.e. M = (x) = Rx = {rx | rR} for some x in M. Similarly, a right R-module N is cyclic if N = yR for some yN.

Examples

[edit]
  • 2Z as a Z-module is a cyclic module.
  • In fact, every cyclic group is a cyclic Z-module.
  • Every simple R-module M is a cyclic module since the submodule generated by any non-zero element x of M is necessarily the whole module M. In general, a module is simple if and only if it is nonzero and is generated by each of its nonzero elements.[2]
  • If the ring R is considered as a left module over itself, then its cyclic submodules are exactly its left principal ideals as a ring. The same holds for R as a right R-module, mutatis mutandis.
  • If R is F[x], the ring of polynomials over a field F, and V is an R-module which is also a finite-dimensional vector space over F, then the Jordan blocks of x acting on V are cyclic submodules. (The Jordan blocks are all isomorphic to F[x] / (xλ)n; there may also be other cyclic submodules with different annihilators; see below.)

Properties

[edit]
  • Given a cyclic R-module M that is generated by x, there exists a canonical isomorphism between M and R / AnnR x, where AnnR x denotes the annihilator of x in R.

See also

[edit]

References

[edit]
  1. ^ Bourbaki, Algebra I: Chapters 1–3, p. 220
  2. ^ Anderson & Fuller 1992, Just after Proposition 2.7.