Welcome to the community hub built on top of the Cyclic module Wikipedia article.
Here, you can discuss, collect, and organize anything related to Cyclic module. The
purpose of the hub is to connect peopl...
In mathematics, more specifically in ring theory, a cyclic module or monogenous module[1] is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element.
A left R-module M is called cyclic if M can be generated by a single element i.e. M = (x) = Rx = {rx | r ∈ R} for some x in M. Similarly, a right R-module N is cyclic if N = yR for some y ∈ N.
Every simpleR-module M is a cyclic module since the submodule generated by any non-zero element x of M is necessarily the whole module M. In general, a module is simple if and only if it is nonzero and is generated by each of its nonzero elements.[2]
If the ring R is considered as a left module over itself, then its cyclic submodules are exactly its left principal ideals as a ring. The same holds for R as a right R-module, mutatis mutandis.
Given a cyclic R-module M that is generated by x, there exists a canonical isomorphism between M and R / AnnRx, where AnnRx denotes the annihilator of x in R.