Hubbry Logo
search button
Sign in
Euler's theorem (differential geometry)
Euler's theorem (differential geometry)
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Euler's theorem (differential geometry)
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Euler's theorem (differential geometry) Wikipedia article. Here, you can discuss, collect, and organize anything related to Euler's theorem (differential geometry). The ...
Add your contribution
Euler's theorem (differential geometry)

In the mathematical field of differential geometry, Euler's theorem is a result on the curvature of curves on a surface. The theorem establishes the existence of principal curvatures and associated principal directions which give the directions in which the surface curves the most and the least. The theorem is named for Leonhard Euler who proved the theorem in (Euler 1760).

More precisely, let M be a surface in three-dimensional Euclidean space, and p a point on M. A normal plane through p is a plane passing through the point p containing the normal vector to M. Through each (unit) tangent vector to M at p, there passes a normal plane PX which cuts out a curve in M. That curve has a certain curvature κX when regarded as a curve inside PX. Provided not all κX are equal, there is some unit vector X1 for which k1 = κX1 is as large as possible, and another unit vector X2 for which k2 = κX2 is as small as possible. Euler's theorem asserts that X1 and X2 are perpendicular and that, moreover, if X is any vector making an angle θ with X1, then

The quantities k1 and k2 are called the principal curvatures, and X1 and X2 are the corresponding principal directions. Equation (1) is sometimes called Euler's equation (Eisenhart 2004, p. 124).

See also

[edit]

References

[edit]
  • Eisenhart, Luther P. (2004), A Treatise on the Differential Geometry of Curves and Surfaces, Dover, ISBN 0-486-43820-1 Full 1909 text (now out of copyright)
  • Euler, Leonhard (1760), "Recherches sur la courbure des surfaces", Mémoires de l'Académie des Sciences de Berlin, 16 (published 1767): 119–143.
  • Spivak, Michael (1999), A comprehensive introduction to differential geometry, Volume II, Publish or Perish Press, ISBN 0-914098-71-3