Hubbry Logo
search button
Sign in
Modular Lie algebra
Modular Lie algebra
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Modular Lie algebra
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Modular Lie algebra Wikipedia article. Here, you can discuss, collect, and organize anything related to Modular Lie algebra. The purpose of the hub is to c...
Add your contribution
Modular Lie algebra

In mathematics, a modular Lie algebra is a Lie algebra over a field of positive characteristic.

The theory of modular Lie algebras is significantly different from the theory of real and complex Lie algebras. This difference can be traced to the properties of Frobenius automorphism and to the failure of the exponential map to establish a tight connection between properties of a modular Lie algebra and the corresponding algebraic group.

Although serious study of modular Lie algebras was initiated by Nathan Jacobson in 1950s, their representation theory in the semisimple case was advanced only recently due to the influential Lusztig conjectures, which have been partially proved.

References

[edit]
  • Strade, Helmut; Wilson, Robert Lee (1991), "Classification of simple Lie algebras over algebraically closed fields of prime characteristic", Bulletin of the American Mathematical Society, New Series, 24 (2): 357–362, doi:10.1090/S0273-0979-1991-16033-7, ISSN 0002-9904, MR 1071032