Hubbry Logo
search button
Sign in
Multiplicative order
Multiplicative order
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Multiplicative order
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Multiplicative order Wikipedia article. Here, you can discuss, collect, and organize anything related to Multiplicative order. The purpose of the hub is to...
Add your contribution
Multiplicative order

In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that .[1]

In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.

The order of a modulo n is sometimes written as .[2]

Example

[edit]

The powers of 4 modulo 7 are as follows:

The smallest positive integer k such that 4k ≡ 1 (mod 7) is 3, so the order of 4 (mod 7) is 3.

Properties

[edit]

Even without knowledge that we are working in the multiplicative group of integers modulo n, we can show that a actually has an order by noting that the powers of a can only take a finite number of different values modulo n, so according to the pigeonhole principle there must be two powers, say s and t and without loss of generality s > t, such that as ≡ at (mod n). Since a and n are coprime, a has an inverse element a−1 and we can multiply both sides of the congruence with at, yielding ast ≡ 1 (mod n).

The concept of multiplicative order is a special case of the order of group elements. The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or U(Zn).

As a consequence of Lagrange's theorem, the order of a (mod n) always divides φ(n). If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n. This means that the group U(n) is cyclic and the residue class of a generates it.

The order of a (mod n) also divides λ(n), a value of the Carmichael function, which is an even stronger statement than the divisibility of φ(n).

Programming languages

[edit]

See also

[edit]

References

[edit]
  1. ^ Niven, Zuckerman & Montgomery 1991, Section 2.8 Definition 2.6
  2. ^ von zur Gathen, Joachim; Gerhard, Jürgen (2013). Modern Computer Algebra (3rd ed.). Cambridge University Press. Section 18.1. ISBN 9781107039032.
  3. ^ Maxima 5.42.0 Manual: zn_order
  4. ^ Wolfram Language documentation
  5. ^ rosettacode.org - examples of multiplicative order in various languages
[edit]