Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Operator ideal
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Operator ideal Wikipedia article. Here, you can discuss, collect, and organize anything related to Operator ideal. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Operator ideal

In functional analysis, a branch of mathematics, an operator ideal is a special kind of class of continuous linear operators between Banach spaces. If an operator belongs to an operator ideal , then for any operators and which can be composed with as , then is class as well. Additionally, in order for to be an operator ideal, it must contain the class of all finite-rank Banach space operators.

Formal definition

[edit]

Let denote the class of continuous linear operators acting between arbitrary Banach spaces. For any subclass of and any two Banach spaces and over the same field , denote by the set of continuous linear operators of the form such that . In this case, we say that is a component of . An operator ideal is a subclass of , containing every identity operator acting on a 1-dimensional Banach space, such that for any two Banach spaces and over the same field , the following two conditions for are satisfied:

(1) If then ; and
(2) if and are Banach spaces over with and , and if , then .

Properties and examples

[edit]

Operator ideals enjoy the following nice properties.

  • Every component of an operator ideal forms a linear subspace of , although in general this need not be norm-closed.
  • Every operator ideal contains all finite-rank operators. In particular, the finite-rank operators form the smallest operator ideal.
  • For each operator ideal , every component of the form forms an ideal in the algebraic sense.

Furthermore, some very well-known classes are norm-closed operator ideals, i.e., operator ideals whose components are always norm-closed. These include but are not limited to the following.

References

[edit]
Add your contribution
Related Hubs