Hubbry Logo
RIPK3RIPK3Main
Open search
RIPK3
Community hub
RIPK3
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
RIPK3
from Wikipedia

RIPK3
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesRIPK3, RIP3, receptor interacting serine/threonine kinase 3
External IDsOMIM: 605817; MGI: 2154952; HomoloGene: 31410; GeneCards: RIPK3; OMA:RIPK3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006871

NM_001164107
NM_001164108
NM_019955

RefSeq (protein)

NP_006862

NP_001157579
NP_001157580
NP_064339

Location (UCSC)Chr 14: 24.34 – 24.34 MbChr 14: 56.02 – 56.03 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Receptor-interacting serine/threonine-protein kinase 3 is an enzyme that is encoded by the RIPK3 gene in humans.[5][6][7][8]

The product of this gene is a member of the receptor-interacting protein (RIP) family of serine/threonine protein kinases. It contains a C-terminal domain unique from other RIP family members. The encoded protein is predominantly localized to the cytoplasm, and can undergo nucleocytoplasmic shuttling dependent on novel nuclear localization and export signals. It is a component of the tumor necrosis factor (TNF) receptor-I signaling complex, and can induce necroptosis by interaction with RIPK1 and MLKL in a protein complex termed the necrosome.[7] Interactions between RIPK1 and RIPK3 also form a necrosome, which triggers apoptosis.[9]

The red highlighted region of RIPK3 represents the Protein Kinase domain. The cyan region highlights the RIP homotypic interaction motif (RHIM) motif.[10]

Interactions

[edit]

RIPK3 has been shown to interact with RIPK1 to form an amyloid spine[5][8] The RIP Homotypic Interaction Motifs (RHIM) of RIPK3 allows it to form a necrosome with RIPK1.[9] This interaction makes heterotypic β sheets, which bind together to form an alternating "ladder" of Serine from RIPK1 and Cysteine from RIPK3.[9]

Clinical significance

[edit]

RIPK3 is believed to contribute to lung inflammation and injury during severe infections with the influenza A virus. The experimental RIPK3 inhibitor UH15-38 has shown potential in preclinical studies to reduce mortality and lung damage in mice infected with influenza, indicating that RIPK3 may serve as a therapeutic target for managing hyper-inflammatory conditions such as influenza-related acute respiratory distress syndrome (ARDS).[11][12][13]

References

[edit]

Further reading

[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
Add your contribution
Related Hubs
User Avatar
No comments yet.