Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Rees algebra
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Rees algebra Wikipedia article. Here, you can discuss, collect, and organize anything related to Rees algebra. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Rees algebra

In commutative algebra, the Rees algebra or Rees ring of an ideal I in a commutative ring R is defined to be

The extended Rees algebra of I (which some authors[1] refer to as the Rees algebra of I) is defined as

This construction has special interest in algebraic geometry since the projective scheme defined by the Rees algebra of an ideal in a ring is the blowing-up of the spectrum of the ring along the subscheme defined by the ideal (see Ideal sheaf § Algebraic geometry).[2]

Properties

[edit]

The Rees algebra is an algebra over , and it is defined so that, quotienting by or t=λ for λ any invertible element in R, we get

Thus it interpolates between R and its associated graded ring grIR.

  • Assume R is Noetherian; then R[It] is also Noetherian. The Krull dimension of the Rees algebra is if I is not contained in any prime ideal P with ; otherwise . The Krull dimension of the extended Rees algebra is .[3]
  • If are ideals in a Noetherian ring R, then the ring extension is integral if and only if J is a reduction of I.[3]
  • If I is an ideal in a Noetherian ring R, then the Rees algebra of I is the quotient of the symmetric algebra of I by its torsion submodule.

Relationship with other blow-up algebras

[edit]

The associated graded ring of I may be defined as

If R is a Noetherian local ring with maximal ideal , then the special fiber ring of I is given by

The Krull dimension of the special fiber ring is called the analytic spread of I.

References

[edit]
[edit]
Add your contribution
Related Hubs