Hubbry Logo
search button
Sign in
Slowly varying function
Slowly varying function
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Slowly varying function
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Slowly varying function Wikipedia article. Here, you can discuss, collect, and organize anything related to Slowly varying function. The purpose of the hub...
Add your contribution
Slowly varying function

In real analysis, a branch of mathematics, a slowly varying function is a function of a real variable whose behaviour at infinity is in some sense similar to the behaviour of a function converging at infinity. Similarly, a regularly varying function is a function of a real variable whose behaviour at infinity is similar to the behaviour of a power law function (like a polynomial) near infinity. These classes of functions were both introduced by Jovan Karamata,[1][2] and have found several important applications, for example in probability theory.

Basic definitions

[edit]

Definition 1. A measurable function L : (0, +∞) → (0, +∞) is called slowly varying (at infinity) if for all a > 0,

Definition 2. Let L : (0, +∞) → (0, +∞). Then L is a regularly varying function if and only if . In particular, the limit must be finite.

These definitions are due to Jovan Karamata.[1][2]

Basic properties

[edit]

Regularly varying functions have some important properties:[1] a partial list of them is reported below. More extensive analyses of the properties characterizing regular variation are presented in the monograph by Bingham, Goldie & Teugels (1987).

Uniformity of the limiting behaviour

[edit]

Theorem 1. The limit in definitions 1 and 2 is uniform if a is restricted to a compact interval.

Karamata's characterization theorem

[edit]

Theorem 2. Every regularly varying function f : (0, +∞) → (0, +∞) is of the form

where

Note. This implies that the function g(a) in definition 2 has necessarily to be of the following form

where the real number ρ is called the index of regular variation.

Karamata representation theorem

[edit]

Theorem 3. A function L is slowly varying if and only if there exists B > 0 such that for all xB the function can be written in the form

where

  • η(x) is a bounded measurable function of a real variable converging to a finite number as x goes to infinity
  • ε(x) is a bounded measurable function of a real variable converging to zero as x goes to infinity.

Examples

[edit]
  • If L is a measurable function and has a limit
then L is a slowly varying function.
  • For any βR, the function L(x) = logβx is slowly varying.
  • The function L(x) = x is not slowly varying, nor is L(x) = xβ for any real β ≠ 0. However, these functions are regularly varying.

See also

[edit]

Notes

[edit]

References

[edit]
  • Bingham, N.H. (2001) [1994], "Karamata theory", Encyclopedia of Mathematics, EMS Press
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. (1987), Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge: Cambridge University Press, ISBN 0-521-30787-2, MR 0898871, Zbl 0617.26001
  • Galambos, J.; Seneta, E. (1973), "Regularly Varying Sequences", Proceedings of the American Mathematical Society, 41 (1): 110–116, doi:10.2307/2038824, ISSN 0002-9939, JSTOR 2038824.