Hubbry Logo
search button
Sign in
Treynor ratio
Treynor ratio
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Treynor ratio
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Treynor ratio Wikipedia article. Here, you can discuss, collect, and organize anything related to Treynor ratio. The purpose of the hub is to connect peopl...
Add your contribution
Treynor ratio

In finance, the Treynor reward-to-volatility model (sometimes called the reward-to-volatility ratio or Treynor measure[1]), named after American economist Jack L. Treynor,[2] is a measurement of the returns earned in excess of that which could have been earned on an investment that has no risk that can be diversified (e.g., Treasury bills or a completely diversified portfolio), per unit of market risk assumed.

The Treynor ratio relates excess return over the risk-free rate to the additional risk taken; however, systematic risk is used instead of total risk. The higher the Treynor ratio, the better the performance of the portfolio under analysis.

Formula

[edit]

where:

Treynor ratio,
portfolio i's return,
risk free rate
portfolio i's beta

Example

[edit]

Taking the equation detailed above, let us assume that the expected portfolio return is 20%, the risk free rate is 5%, and the beta of the portfolio is 1.5. Substituting these values, we get the following

Limitations

[edit]

Like the Sharpe ratio, the Treynor ratio (T) does not quantify the value added, if any, of active portfolio management. It is a ranking criterion only. A ranking of portfolios based on the Treynor Ratio is only useful if the portfolios under consideration are sub-portfolios of a broader, fully diversified portfolio. If this is not the case, portfolios with identical systematic risk, but different total risk, will be rated the same. But the portfolio with a higher total risk is less diversified and therefore has a higher unsystematic risk which is not priced in the market.

An alternative method of ranking portfolio management is Jensen's alpha, which quantifies the added return as the excess return above the security market line in the capital asset pricing model. As these two methods both determine rankings based on systematic risk alone, they will rank portfolios identically.

See also

[edit]

References

[edit]
  1. ^ Brown, Keith C.; Frank K. Reilly. "25". Analysis of Investments and Management of Portfolios (9th International ed.). Cengage Learning. p. 941.
  2. ^ "Treynor Ratio". Retrieved 20 February 2010.