Hubbry Logo
search button
Sign in
Trinomial expansion
Trinomial expansion
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Trinomial expansion
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Trinomial expansion Wikipedia article. Here, you can discuss, collect, and organize anything related to Trinomial expansion. The purpose of the hub is to c...
Add your contribution
Trinomial expansion
Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number

In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by

where n is a nonnegative integer and the sum is taken over all combinations of nonnegative indices i, j, and k such that i + j + k = n.[1] The trinomial coefficients are given by

This formula is a special case of the multinomial formula for m = 3. The coefficients can be defined with a generalization of Pascal's triangle to three dimensions, called Pascal's pyramid or Pascal's tetrahedron.[2]

Derivation

[edit]

The trinomial expansion can be calculated by applying the binomial expansion twice, setting , which leads to

Above, the resulting in the second line is evaluated by the second application of the binomial expansion, introducing another summation over the index .

The product of the two binomial coefficients is simplified by shortening ,

and comparing the index combinations here with the ones in the exponents, they can be relabelled to , which provides the expression given in the first paragraph.

Properties

[edit]

The number of terms of an expanded trinomial is the triangular number

where n is the exponent to which the trinomial is raised.[3]

Example

[edit]

An example of a trinomial expansion with is :

See also

[edit]

References

[edit]
  1. ^ Koshy, Thomas (2004), Discrete Mathematics with Applications, Academic Press, p. 889, ISBN 9780080477343.
  2. ^ Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2009), Combinatorics and Graph Theory, Undergraduate Texts in Mathematics (2nd ed.), Springer, p. 146, ISBN 9780387797113.
  3. ^ Rosenthal, E. R. (1961), "A Pascal pyramid for trinomial coefficients", The Mathematics Teacher, 54 (5): 336–338, doi:10.5951/MT.54.5.0336.