Hubbry Logo
search button
Sign in
Windmill graph
Windmill graph
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Windmill graph
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Windmill graph Wikipedia article. Here, you can discuss, collect, and organize anything related to Windmill graph. The purpose of the hub is to connect peo...
Add your contribution
Windmill graph
Windmill graph
The Windmill graph Wd(5,4).
Verticesn(k − 1) + 1
Edgesnk(k − 1)/2
Radius1
Diameter2
Girth3 if k > 2
Chromatic numberk
Chromatic indexn(k − 1)
NotationWd(k,n)
Table of graphs and parameters

In the mathematical field of graph theory, the windmill graph Wd(k,n) is an undirected graph constructed for k ≥ 2 and n ≥ 2 by joining n copies of the complete graph Kk at a shared universal vertex. That is, it is a 1-clique-sum of these complete graphs.[1]

Properties

[edit]

It has n(k − 1) + 1 vertices and nk(k − 1)/2 edges,[2] girth 3 (if k > 2), radius 1 and diameter 2. It has vertex connectivity 1 because its central vertex is an articulation point; however, like the complete graphs from which it is formed, it is (k − 1)-edge-connected. It is trivially perfect and a block graph.

Special cases

[edit]

By construction, the windmill graph Wd(3,n) is the friendship graph Fn, the windmill graph Wd(2,n) is the star graph Sn and the windmill graph Wd(3,2) is the butterfly graph.

Labeling and colouring

[edit]

The windmill graph has chromatic number k and chromatic index n(k − 1). Its chromatic polynomial can be deduced from the chromatic polynomial of the complete graph and is equal to

The windmill graph Wd(k,n) is proved not graceful if k > 5.[3] In 1979, Bermond has conjectured that Wd(4,n) is graceful for all n ≥ 4.[4] Through an equivalence with perfect difference families, this has been proved for n ≤ 1000. [5] Bermond, Kotzig, and Turgeon proved that Wd(k,n) is not graceful when k = 4 and n = 2 or n = 3, and when k = 5 and n = 2.[6] The windmill Wd(3,n) is graceful if and only if n ≡ 0 (mod 4) or n ≡ 1 (mod 4).[7]

[edit]
Small windmill graphs.

References

[edit]
  1. ^ Gallian, J. A. (3 January 2007). "A dynamic survey of graph labeling" (PDF). Electronic Journal of Combinatorics. DS6: 1–58. MR 1668059.
  2. ^ Weisstein, Eric W. "Windmill Graph". MathWorld.
  3. ^ Koh, K. M.; Rogers, D. G.; Teo, H. K.; Yap, K. Y. (1980). "Graceful graphs: some further results and problems". Congressus Numerantium. 29: 559–571. MR 0608456.
  4. ^ Bermond, J.-C. (1979). "Graceful graphs, radio antennae and French windmills". In Wilson, Robin J. (ed.). Graph theory and combinatorics (Proc. Conf., Open Univ., Milton Keynes, 1978). Research notes in mathematics. Vol. 34. Pitman. pp. 18–37. ISBN 978-0273084358. MR 0587620. OCLC 757210583.
  5. ^ Ge, G.; Miao, Y.; Sun, X. (2010). "Perfect difference families, perfect difference matrices, and related combinatorial structures". Journal of Combinatorial Designs. 18 (6): 415–449. doi:10.1002/jcd.20259. MR 2743134. S2CID 120800012.
  6. ^ Bermond, J.-C.; Kotzig, A.; Turgeon, J. (1978). "On a combinatorial problem of antennas in radioastronomy". In Hajnal, A.; Sos, Vera T. (eds.). Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I. Colloquia mathematica Societatis János Bolyai. Vol. 18. North-Holland. pp. 135–149. ISBN 978-0-444-85095-9. MR 0519261.
  7. ^ Bermond, J.-C.; Brouwer, A. E.; Germa, A. (1978). "Systèmes de triplets et différences associées". Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloques internationaux du Centre National de la Recherche Scientifique. Vol. 260. Éditions du Centre national de la recherche scientifique. pp. 35–38. ISBN 978-2-222-02070-7. MR 0539936.