Hubbry Logo
search button
Sign in
Elongated pentagonal pyramid
Elongated pentagonal pyramid
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Elongated pentagonal pyramid
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Elongated pentagonal pyramid Wikipedia article. Here, you can discuss, collect, and organize anything related to Elongated pentagonal pyramid. The purpose ...
Add your contribution
Elongated pentagonal pyramid
Elongated pentagonal pyramid
TypeJohnson
J8J9J10
Faces5 triangles
5 squares
1 pentagon
Edges20
Vertices11
Vertex configuration5(42.5)
5(32.42)
1(35)
Symmetry groupC5v, [5], (*55)
Rotation groupC5, [5]+, (55)
Dual polyhedronself-dual[1]
Propertiesconvex
Net
3D model of an elongated pentagonal pyramid

The elongated pentagonal pyramid is a polyhedron constructed by attaching one pentagonal pyramid onto one of the pentagonal prism's bases, a process known as elongation. It is an example of composite polyhedron.[2][3] This construction involves the removal of one pentagonal face and replacing it with the pyramid. The resulting polyhedron has five equilateral triangles, five squares, and one pentagon as its faces.[4] It remains convex, with the faces are all regular polygons, so the elongated pentagonal pyramid is Johnson solid, enumerated as the sixteenth Johnson solid .[5]

For edge length , an elongated pentagonal pyramid has a surface area by summing the area of all faces, and volume by totaling the volume of a pentagonal pyramid's Johnson solid and regular pentagonal prism:[4]

The elongated pentagonal pyramid has a dihedral between its adjacent faces:[6]

  • the dihedral angle between adjacent squares is the internal angle of the prism's pentagonal base, 108°;
  • the dihedral angle between the pentagon and a square is the right angle, 90°;
  • the dihedral angle between adjacent triangles is that of a regular icosahedron, 138.19°; and
  • the dihedral angle between a triangle and an adjacent square is the sum of the angle between those in a pentagonal pyramid and the angle between the base of and the lateral face of a prism, 127.37°.

References

[edit]
  1. ^ Draghicescu, Mircea. "Dual Models: One Shape to Make Them All". In Torrence, Eva; Torrence, Bruce; Séquin, Carlo H.; McKenna, Douglas; Fenyvesi, Kristóf; Sarhangi, Reza (eds.). Bridges Finland: Mathematics, Music, Art, Architecture, Education, Culture (PDF). pp. 635–640.
  2. ^ Timofeenko, A. V. (2010). "Junction of Non-composite Polyhedra" (PDF). St. Petersburg Mathematical Journal. 21 (3): 483–512. doi:10.1090/S1061-0022-10-01105-2.
  3. ^ Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84–89. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
  4. ^ a b Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  5. ^ Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. p. 62. doi:10.1007/978-981-15-4470-5. ISBN 978-981-15-4470-5. S2CID 220150682.
  6. ^ Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
[edit]