Hubbry Logo
search button
Sign in
Entropy coding
Entropy coding
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Entropy coding
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Entropy coding Wikipedia article. Here, you can discuss, collect, and organize anything related to Entropy coding. The purpose of the hub is to connect peo...
Add your contribution
Entropy coding

In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source.[1]

More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies , where is the function specifying the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to approach this lower bound.

Two of the most common entropy coding techniques are Huffman coding and arithmetic coding.[2] If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simpler static code may be useful. These static codes include universal codes (such as Elias gamma coding or Fibonacci coding) and Golomb codes (such as unary coding or Rice coding).

Since 2014, data compressors have started using the asymmetric numeral systems family of entropy coding techniques, which allows combination of the compression ratio of arithmetic coding with a processing cost similar to Huffman coding.

Entropy as a measure of similarity

[edit]

Besides using entropy coding as a way to compress digital data, an entropy encoder can also be used to measure the amount of similarity between streams of data and already existing classes of data. This is done by generating an entropy coder/compressor for each class of data; unknown data is then classified by feeding the uncompressed data to each compressor and seeing which compressor yields the highest compression. The coder with the best compression is probably the coder trained on the data that was most similar to the unknown data.

See also

[edit]

References

[edit]
  1. ^ Duda, Jarek; Tahboub, Khalid; Gadgil, Neeraj J.; Delp, Edward J. (May 2015). "The use of asymmetric numeral systems as an accurate replacement for Huffman coding". 2015 Picture Coding Symposium (PCS). pp. 65–69. doi:10.1109/PCS.2015.7170048. ISBN 978-1-4799-7783-3. S2CID 20260346.
  2. ^ Huffman, David (1952). "A Method for the Construction of Minimum-Redundancy Codes". Proceedings of the IRE. 40 (9). Institute of Electrical and Electronics Engineers (IEEE): 1098–1101. doi:10.1109/jrproc.1952.273898. ISSN 0096-8390.
[edit]