Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Gedrite
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Gedrite Wikipedia article. Here, you can discuss, collect, and organize anything related to Gedrite. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Gedrite
Gedrite
Gedrite on a feldspar matrix
General
CategoryInosilicate, ferromagnesian amphibole group
FormulaMg2(Mg3Al2)(Si6Al2)O22(OH)2
IMA symbolGed[1]
Strunz classification9.DD.05
Crystal systemOrthorhombic
Crystal classDipyramidal (mmm)
H-M symbol: (2/m 2/m 2/m)
Space groupPnma
Unit cella = 18.59, b = 17.89
c = 5.3 [Å]; Z = 4
Identification
ColorWhite, gray, brown, green, black
Crystal habitBladed and prismatic crystals; fibrous and sheath like aggregates.
Twinningcontact twinning
Cleavage56 and 126° – good; {210} perfect
FractureSplintery
Mohs scale hardness5.5–6
LusterVitreous to silky
DiaphaneityTranslucent, will transmit light on thin edges.
Specific gravity3.18–3.33
Optical propertiesBiaxial (+)
Refractive indexnα = 1.671 nβ = 1.681 nγ = 1.690
Birefringenceδ = 0.019
PleochroismWeak to moderate
2V angleMeasured: 75°
References[2][3][4][5]

Gedrite is a crystal belonging to the orthorhombic ferromagnesian subgroup of the amphibole supergroup of the double chain inosilicate minerals with the ideal chemical formula Mg2(Mg3Al2)(Si6Al2)O22(OH)2.

Gedrite is the magnesium (Mg) rich endmember of a solid solution series, with divalent magnesium cations readily replaced with ferrous iron (Fe), leading to the iron rich endmember 'ferrogedrite', with the formula: Fe2+2(Fe2+3Al2)(Si6Al2)O22(OH)2. However, pure endmembers are very rare, with often either one of the mentioned cations dominating the composition. Thus, the formula can be written in such a way to express common intermediary gedrite samples: (Mg,Fe)2+2(Mg,Fe)2+3Al2(Al2Si6O22)(OH)2.

Divalent manganese (Mn) may substitute for some of the magnesium. Trivalent or ferric iron, or titanium4+ may replace some of the aluminum (Al). Fluorine and chlorine are common substitutes for the hydroxyl (OH) in amphoboles. Other chemical impurities may include calcium, sodium, and potassium.

Gedrite also forms a series with another ferromagnesian amphibole, anthophyllite.

Gedrite occurs in contact and medium to high grade metamorphic rocks in association with garnet, cordierite, anthophyllite, cummingtonite, sapphirine, sillimanite, kyanite, quartz, staurolite and biotite.[2]

Gedrite was first described for an occurrence in Gèdre, Hautes-Pyrénées, France in 1836.[3]

References

[edit]
Add your contribution
Related Hubs