Hubbry Logo
search button
Sign in
Korkine–Zolotarev lattice basis reduction algorithm
Korkine–Zolotarev lattice basis reduction algorithm
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Korkine–Zolotarev lattice basis reduction algorithm
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Korkine–Zolotarev lattice basis reduction algorithm Wikipedia article. Here, you can discuss, collect, and organize anything related to Korkine–Zolotarev lattice basis reduc...
Add your contribution
Korkine–Zolotarev lattice basis reduction algorithm

The Korkine–Zolotarev (KZ) lattice basis reduction algorithm or Hermite–Korkine–Zolotarev (HKZ) algorithm is a lattice reduction algorithm.

For lattices in it yields a lattice basis with orthogonality defect at most , unlike the bound of the LLL reduction.[1] KZ has exponential complexity versus the polynomial complexity of the LLL reduction algorithm, however it may still be preferred for solving multiple closest vector problems (CVPs) in the same lattice, where it can be more efficient.

History

[edit]

The definition of a KZ-reduced basis was given by Aleksandr Korkin and Yegor Ivanovich Zolotarev in 1877, a strengthened version of Hermite reduction. The first algorithm for constructing a KZ-reduced basis was given in 1983 by Kannan.[2]

The block Korkine-Zolotarev (BKZ) algorithm was introduced in 1987.[3]

Definition

[edit]

A KZ-reduced basis for a lattice is defined as follows:[4]

Given a basis

define its Gram–Schmidt process orthogonal basis

and the Gram-Schmidt coefficients

, for any .

Also define projection functions

which project orthogonally onto the span of .

Then the basis is KZ-reduced if the following holds:

  1. is the shortest nonzero vector in
  2. For all ,

Note that the first condition can be reformulated recursively as stating that is a shortest vector in the lattice, and is a KZ-reduced basis for the lattice .

Also note that the second condition guarantees that the reduced basis is length-reduced (adding an integer multiple of one basis vector to another will not decrease its length); the same condition is used in the LLL reduction.

Notes

[edit]
  1. ^ https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf, pp. 18-19
  2. ^ Zhang et al 2012, p.1
  3. ^ Yasuda, Masaya (2021). "A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge". International Symposium on Mathematics, Quantum Theory, and Cryptography. Mathematics for Industry. Vol. 33. pp. 189–207. doi:10.1007/978-981-15-5191-8_15. ISBN 978-981-15-5190-1. S2CID 226333525.
  4. ^ Micciancio & Goldwasser, p.133, definition 7.8


References

[edit]