Hubbry Logo
search button
Sign in
Continued fraction factorization
Continued fraction factorization
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Continued fraction factorization
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Continued fraction factorization Wikipedia article. Here, you can discuss, collect, and organize anything related to Continued fraction factorization. The ...
Add your contribution
Continued fraction factorization

In number theory, the continued fraction factorization method (CFRAC) is an integer factorization algorithm. It is a general-purpose algorithm, meaning that it is suitable for factoring any integer n, not depending on special form or properties. It was described by D. H. Lehmer and R. E. Powers in 1931,[1] and developed as a computer algorithm by Michael A. Morrison and John Brillhart in 1975.[2]

The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of

.

Since this is a quadratic irrational, the continued fraction must be periodic (unless n is square, in which case the factorization is obvious).

It has a time complexity of , in the O and L notations.[3]

References

[edit]
  1. ^ Lehmer, D.H.; Powers, R.E. (1931). "On Factoring Large Numbers". Bulletin of the American Mathematical Society. 37 (10): 770–776. doi:10.1090/S0002-9904-1931-05271-X.
  2. ^ Morrison, Michael A.; Brillhart, John (January 1975). "A Method of Factoring and the Factorization of F7". Mathematics of Computation. 29 (129). American Mathematical Society: 183–205. doi:10.2307/2005475. JSTOR 2005475.
  3. ^ Pomerance, Carl (December 1996). "A Tale of Two Sieves" (PDF). Notices of the AMS. Vol. 43, no. 12. pp. 1473–1485.

Further reading

[edit]