Hubbry Logo
Lehmer codeLehmer codeMain
Open search
Lehmer code
Community hub
Lehmer code
logo
7 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Lehmer code
Lehmer code
from Wikipedia

In mathematics and in particular in combinatorics, the Lehmer code is a particular way to encode each possible permutation of a sequence of n numbers. It is an instance of a scheme for numbering permutations and is an example of an inversion table.

The Lehmer code is named in reference to D. H. Lehmer,[1] but the code had been known since 1888 at least.[2]

The code

[edit]

The Lehmer code makes use of the fact that there are

permutations of a sequence of n numbers. If a permutation σ is specified by the sequence (σ1, ..., σn) of its images of 1, ..., n, then it is encoded by a sequence of n numbers, but not all such sequences are valid since every number must be used only once. By contrast the encodings considered here choose the first number from a set of n values, the next number from a fixed set of n − 1 values, and so forth decreasing the number of possibilities until the last number for which only a single fixed value is allowed; every sequence of numbers chosen from these sets encodes a single permutation. While several encodings can be defined, the Lehmer code has several additional useful properties; it is the sequence

in other words the term L(σ)i counts the number of terms in (σ1, ..., σn) to the right of σi that are smaller than it, a number between 0 and ni, allowing for n + 1 − i different values.

A pair of indices (i,j) with i < j and σi > σj is called an inversion of σ, and L(σ)i counts the number of inversions (i,j) with i fixed and varying j. It follows that L(σ)1 + L(σ)2 + … + L(σ)n is the total number of inversions of σ, which is also the number of adjacent transpositions that are needed to transform the permutation into the identity permutation. Other properties of the Lehmer code include that the lexicographical order of the encodings of two permutations is the same as that of their sequences (σ1, ..., σn), that any value 0 in the code represents a right-to-left minimum in the permutation (i.e., a σi smaller than any σj to its right), and a value ni at position i similarly signifies a right-to-left maximum, and that the Lehmer code of σ coincides with the factorial number system representation of its position in the list of permutations of n in lexicographical order (numbering the positions starting from 0).

Variations of this encoding can be obtained by counting inversions (i,j) for fixed j rather than fixed i, by counting inversions with a fixed smaller value σj rather than smaller index i, or by counting non-inversions rather than inversions; while this does not produce a fundamentally different type of encoding, some properties of the encoding will change correspondingly. In particular counting inversions with a fixed smaller value σj gives the inversion table of σ, which can be seen to be the Lehmer code of the inverse permutation.

Encoding and decoding

[edit]

The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth. Translating this freedom of choice at each step into a number, one obtains an encoding algorithm, one that finds the Lehmer code of a given permutation. One need not suppose the objects permuted to be numbers, but one needs a total ordering of the set of objects. Since the code numbers are to start from 0, the appropriate number to encode each object σi by is the number of objects that were available at that point (so they do not occur before position i), but which are smaller than the object σi actually chosen. (Inevitably such objects must appear at some position j > i, and (i,j) will be an inversion, which shows that this number is indeed L(σ)i.)

This number to encode each object can be found by direct counting, in several ways (directly counting inversions, or correcting the total number of objects smaller than a given one, which is its sequence number starting from 0 in the set, by those that are unavailable at its position). Another method which is in-place, but not really more efficient, is to start with the permutation of {0, 1, ... n − 1} obtained by representing each object by its mentioned sequence number, and then for each entry x, in order from left to right, correct the items to its right by subtracting 1 from all entries (still) greater than x (to reflect the fact that the object corresponding to x is no longer available). Concretely a Lehmer code for the permutation B,F,A,G,D,E,C of letters, ordered alphabetically, would first give the list of sequence numbers 1,5,0,6,3,4,2, which is successively transformed

where the final line is the Lehmer code (at each line one subtracts 1 from the larger entries to the right of the boldface element to form the next line).

For decoding a Lehmer code into a permutation of a given set, the latter procedure may be reversed: for each entry x, in order from right to left, correct the items to its right by adding 1 to all those (currently) greater than or equal to x; finally interpret the resulting permutation of {0, 1, ... n − 1} as sequence numbers (which amounts to adding 1 to each entry if a permutation of {1, 2, ... n} is sought). Alternatively the entries of the Lehmer code can be processed from left to right, and interpreted as a number determining the next choice of an element as indicated above; this requires maintaining a list of available elements, from which each chosen element is removed. In the example this would mean choosing element 1 from {A,B,C,D,E,F,G} (which is B) then element 4 from {A,C,D,E,F,G} (which is F), then element 0 from {A,C,D,E,G} (giving A) and so on, reconstructing the sequence B,F,A,G,D,E,C.

Applications to combinatorics and probabilities

[edit]

Independence of relative ranks

[edit]

The Lehmer code defines a bijection from the symmetric group Sn to the Cartesian product , where [k] designates the k-element set . As a consequence, under the uniform distribution on Sn, the component L(σ)i defines a uniformly distributed random variable on [ni], and these random variables are mutually independent, because they are projections on different factors of a Cartesian product.

Number of right-to-left minima and maxima

[edit]

Definition : In a sequence u=(uk)1≤k≤n, there is right-to-left minimum (resp. maximum) at rank k if uk is strictly smaller (resp. strictly bigger) than each element ui with i>k, i.e., to its right.

Let B(k) (resp. H(k)) be the event "there is right-to-left minimum (resp. maximum) at rank k", i.e. B(k) is the set of the permutations which exhibit a right-to-left minimum (resp. maximum) at rank k. We clearly have

Thus the number Nb(ω) (resp. Nh(ω)) of right-to-left minimum (resp. maximum) for the permutation ω can be written as a sum of independent Bernoulli random variables each with a respective parameter of 1/k :

Indeed, as L(k) follows the uniform law on

The generating function for the Bernoulli random variable is

therefore the generating function of Nb is

(using the rising factorial notation), which allows us to recover the product formula for the generating function of the Stirling numbers of the first kind (unsigned).

The secretary problem

[edit]

This is an optimal stop problem, a classic in decision theory, statistics and applied probabilities, where a random permutation is gradually revealed through the first elements of its Lehmer code, and where the goal is to stop exactly at the element k such as σ(k)=n, whereas the only available information (the k first values of the Lehmer code) is not sufficient to compute σ(k).

In less mathematical words: a series of n applicants are interviewed one after the other. The interviewer must hire the best applicant, but must make his decision (“Hire” or “Not hire”) on the spot, without interviewing the next applicant (and a fortiori without interviewing all applicants).

The interviewer thus knows the rank of the kth applicant, therefore, at the moment of making his kth decision, the interviewer knows only the k first elements of the Lehmer code whereas he would need to know all of them to make a well informed decision. To determine the optimal strategies (i.e. the strategy maximizing the probability of a win), the statistical properties of the Lehmer code are crucial.

Allegedly, Johannes Kepler clearly exposed this secretary problem to a friend of his at a time when he was trying to make up his mind and choose one out eleven prospective brides as his second wife. His first marriage had been an unhappy one, having been arranged without himself being consulted, and he was thus very concerned that he could reach the right decision.[3]

Similar concepts

[edit]

Several related constructions have also been put into use. One of them is often called inversion vector, e.g. by Wolfram Alpha. See also Inversion (discrete mathematics) § Inversion related vectors.

References

[edit]

Bibliography

[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
The Lehmer code, also known as the inversion table or inversion vector, is a bijective encoding of a permutation σSn\sigma \in S_n (the symmetric group on nn elements) as a vector cσ=(c1,c2,,cn)c_\sigma = (c_1, c_2, \dots, c_n) in the set Cn={0}×[0,1]×[0,2]××[0,n1]C_n = \{0\} \times [0,1] \times [0,2] \times \cdots \times [0, n-1], where cx={y:y<x,σ(y)>σ(x)}c_x = |\{ y : y < x, \sigma(y) > \sigma(x) \}| for each position x=1,,nx = 1, \dots, n, counting the number of larger values to the left of position xx in the one-line notation of σ\sigma. This representation uniquely maps each permutation to a sequence of non-negative integers satisfying 0cxx10 \leq c_x \leq x-1, with c1=0c_1 = 0 always, enabling efficient encoding and decoding in linear time O(n)O(n). The code provides a natural way to order permutations lexicographically via the factorial number system, where the index of a permutation corresponds directly to the integer value of its Lehmer code interpreted in base factorials. Named after the mathematician Derrick Henry "D. H." Lehmer (1905–1991), who described the code in detail in his 1960 paper "Teaching Combinatorial Tricks to a Computer" in the context of algorithmic generation of permutations, the underlying inversion table concept has roots in 19th-century but gained prominence through Lehmer's work, which emphasized its practical implementation for computer-based enumeration and analysis. In modern applications, the Lehmer code facilitates rank aggregation in , where it compresses partial rankings into vectors for efficient probabilistic modeling and optimization under metrics like . It is also employed in permutation entropy calculations for analysis, enumerative coding for data compression, and generating uniform random in algorithms, due to its prefix-free property and simplicity in decoding to the corresponding permutation via insertion of elements in decreasing order. These properties make it a foundational tool in , with extensions to weak orders, parabolic quotients, and even non-classical permutation structures like those in Coxeter groups.

History and Definition

Historical Background

The Lehmer code traces its origins to the late , when French Charles-Ange Laisant introduced a numbering system for representing in his seminal paper. In this work, Laisant described a method to enumerate and encode using bases, providing a systematic way to assign unique indices to each permutation without employing the modern terminology of "Lehmer code." This innovation emerged within the broader context of , where Laisant and contemporaries sought efficient tools for cataloging combinatorial objects during an era of growing interest in permutation theory. The encoding was first proposed around 1906 by American mathematician Derrick Norman Lehmer and later elaborated in detail by his son, Derrick Henry Lehmer. The concept gained prominence in the mid-20th century through the efforts of Derrick Henry Lehmer, who adapted and popularized the encoding scheme for computational purposes. In his 1960 paper, Lehmer presented the code as a practical tool for generating and manipulating on early computers, emphasizing its utility in combinatorial enumeration algorithms. This development reflected the era's shift toward computer-assisted mathematics, where Lehmer's expertise in and permutation generation addressed the need for efficient data structures in automated problem-solving. Although the Lehmer code is named after Derrick Henry Lehmer, its foundational ideas bear resemblance to earlier notions like inversion tables, which served as precursors in permutation analysis. The code's evolution from Laisant's theoretical framework to the Lehmers' computational applications underscores its enduring role in bridging classical combinatorics with modern computing.

Formal Definition

The Lehmer code of a permutation σ\sigma of the set ={1,2,,n} = \{1, 2, \dots, n\} is the sequence L(σ)=(L(σ)1,L(σ)2,,L(σ)n)L(\sigma) = (L(\sigma)_1, L(\sigma)_2, \dots, L(\sigma)_n), where each entry is defined as L(σ)i={j<i:σ(j)>σ(i)}L(\sigma)_i = \bigl|\{j < i : \sigma(j) > \sigma(i)\}\bigr|
Add your contribution
Related Hubs
User Avatar
No comments yet.