Hubbry Logo
MetrologyMetrologyMain
Open search
Metrology
Community hub
Metrology
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Metrology
Metrology
from Wikipedia

The NIST-4 Kibble balance, which is used to measure weight via electric current and voltage. With this instrument, the measurement of mass is no longer dependent on a defined mass standard and is instead dependent on natural physical constants.

Metrology is the scientific study of measurement.[1] It establishes a common understanding of units, crucial in linking human activities.[2] Modern metrology has its roots in the French Revolution's political motivation to standardise units in France when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention.[3][4] This has evolved into the International System of Units (SI) as a result of a resolution at the 11th General Conference on Weights and Measures (CGPM) in 1960.[5]

Metrology is divided into three basic overlapping activities:[6][7]

  • The definition of units of measurement
  • The realisation of these units of measurement in practice
  • Traceability—linking measurements made in practice to the reference standards

These overlapping activities are used in varying degrees by the three basic sub-fields of metrology:[6]

  • Scientific or fundamental metrology, concerned with the establishment of units of measurement
  • Applied, technical or industrial metrology—the application of measurement to manufacturing and other processes in society
  • Legal metrology, covering the regulation and statutory requirements for measuring instruments and methods of measurement

In each country, a national measurement system (NMS) exists as a network of laboratories, calibration facilities and accreditation bodies which implement and maintain its metrology infrastructure.[8][9] The NMS affects how measurements are made in a country and their recognition by the international community, which has a wide-ranging impact in its society (including economics, energy, environment, health, manufacturing, industry and consumer confidence).[10][11] The effects of metrology on trade and economy are some of the easiest-observed societal impacts. To facilitate fair trade, there must be an agreed-upon system of measurement.[11]

History

[edit]

The ability to measure alone is insufficient; standardisation is crucial for measurements to be meaningful.[12] The first record of a permanent standard was in 2900 BC, when the royal Egyptian cubit was carved from black granite.[12] The cubit was decreed to be the length of the Pharaoh's forearm plus the width of his hand, and replica standards were given to builders.[3] The success of a standardised length for the building of the pyramids is indicated by the lengths of their bases differing by no more than 0.05 percent.[12]

In China weights and measures had a semi religious meaning as it was used in the various crafts by the Artificers and in ritual utensils and is mentioned in the book of rites along with the steelyard balance and other tools.[13]

Other civilizations produced generally accepted measurement standards, with Roman and Greek architecture based on distinct systems of measurement.[12] The collapse of the empires and the Dark Ages that followed lost much measurement knowledge and standardisation. Although local systems of measurement were common, comparability was difficult since many local systems were incompatible.[12] England established the Assize of Measures to create standards for length measurements in 1196, and the 1215 Magna Carta included a section for the measurement of wine and beer.[14]

Modern metrology has its roots in the French Revolution. With a political motivation to harmonise units throughout France, a length standard based on a natural source was proposed.[12] In March 1791, the metre was defined.[4] This led to the creation of the decimal-based metric system in 1795, establishing standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure international conformity, the International Bureau of Weights and Measures (French: Bureau International des Poids et Mesures, or BIPM) was formed by the Metre Convention.[3][4] Although the BIPM's original mission was to create international standards for units of measurement and relate them to national standards to ensure conformity, its scope has broadened to include electrical and photometric units and ionizing radiation measurement standards.[4] The metric system was modernised in 1960 with the creation of the International System of Units (SI) as a result of a resolution at the 11th General Conference on Weights and Measures (French: Conference Generale des Poids et Mesures, or CGPM).[5]

Subfields

[edit]

Metrology is defined by the International Bureau of Weights and Measures (BIPM) as "the science of measurement, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology".[15] It establishes a common understanding of units, crucial to human activity.[2] Metrology is a wide reaching field, but can be summarized through three basic activities: the definition of internationally accepted units of measurement, the realisation of these units of measurement in practice, and the application of chains of traceability (linking measurements to reference standards).[2][6] These concepts apply in different degrees to metrology's three main fields: scientific metrology; applied, technical or industrial metrology, and legal metrology.[6]

Scientific metrology

[edit]

Scientific metrology is concerned with the establishment of units of measurement, the development of new measurement methods, the realisation of measurement standards, and the transfer of traceability from these standards to users in a society.[2][3] This type of metrology is considered the top level of metrology which strives for the highest degree of accuracy.[2] BIPM maintains a database of the metrological calibration and measurement capabilities of institutes around the world. These institutes, whose activities are peer-reviewed, provide the fundamental reference points for metrological traceability. In the area of measurement, BIPM has identified nine metrology areas, which are acoustics, electricity and magnetism, length, mass and related quantities, photometry and radiometry, ionizing radiation, time and frequency, thermometry, and chemistry.[16]

As of May 2019 no physical objects define the base units.[17] The motivation in the change of the base units is to make the entire system derivable from physical constants, which required the removal of the prototype kilogram as it is the last artefact the unit definitions depend on.[18] Scientific metrology plays an important role in this redefinition of the units as precise measurements of the physical constants is required to have accurate definitions of the base units. To redefine the value of a kilogram without an artefact the value of the Planck constant must be known to twenty parts per billion.[19] Scientific metrology, through the development of the Kibble balance and the Avogadro project, has produced a value of Planck constant with low enough uncertainty to allow for a redefinition of the kilogram.[18]

Applied, technical or industrial metrology

[edit]

Applied, technical or industrial metrology is concerned with the application of measurement to manufacturing and other processes and their use in society, ensuring the suitability of measurement instruments, their calibration and quality control.[2] Producing good measurements is important in industry as it has an impact on the value and quality of the end product, and a 10–15% impact on production costs.[6] Although the emphasis in this area of metrology is on the measurements themselves, traceability of the measuring-device calibration is necessary to ensure confidence in the measurement. Recognition of the metrological competence in industry can be achieved through mutual recognition agreements, accreditation, or peer review.[6] Industrial metrology is important to a country's economic and industrial development, and the condition of a country's industrial-metrology program can indicate its economic status.[20]

[edit]

Legal metrology "concerns activities which result from statutory requirements and concern measurement, units of measurement, measuring instruments and methods of measurement and which are performed by competent bodies".[21] Such statutory requirements may arise from the need for protection of health, public safety, the environment, enabling taxation, protection of consumers and fair trade. The International Organization for Legal Metrology (OIML) was established to assist in harmonising regulations across national boundaries to ensure that legal requirements do not inhibit trade.[22] This harmonisation ensures that certification of measuring devices in one country is compatible with another country's certification process, allowing the trade of the measuring devices and the products that rely on them. WELMEC was established in 1990 to promote cooperation in the field of legal metrology in the European Union and among European Free Trade Association (EFTA) member states.[23] In the United States legal metrology is under the authority of the Office of Weights and Measures of National Institute of Standards and Technology (NIST), enforced by the individual states.[22]

Concepts

[edit]

Definition of units

[edit]

The International System of Units (SI) defines seven base units: length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity.[24] By convention, each of these units are considered to be mutually independent and can be constructed directly from their defining constants.[25]: 129  All other SI units are constructed as products of powers of the seven base units.[25]: 129 

SI base units and standards
Base quantity Name Symbol Definition
Time second s The duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom[25]: 130 
Length metre m The length of the path travelled by light in a vacuum during a time interval of 1/299792458 of a second[25]: 131 
Mass kilogram kg Defined (as of 2019) by "... taking the fixed numerical value of the Planck constant, h, to be 6.62607015×10−34 when expressed in the unit J s, which is equal to kg m2 s−1 ..."[25]: 131 
Electric current ampere A Defined (as of 2019) by "... taking the fixed numerical value of the elementary charge, e, to be 1.602176634×10−19 when expressed in the unit C, which is equal to A s ..."[25]: 132 
Thermodynamic temperature kelvin K Defined (as of 2019) by "... taking the fixed numerical value of the Boltzmann constant, k, to be 1.380649×10−23 when expressed in the unit J K−1, which is equal to kg m2 s−2 K−1 ..."[25]: 133 
Amount of substance mole mol Contains (as of 2019) "... exactly 6.02214076×1023 elementary entities. This number is the fixed numerical value of the Avogadro constant, NA, when expressed in the unit mol−1 ..."[25]: 134 
Luminous intensity candela cd The luminous intensity, in a given direction, of a source emitting monochromatic radiation of a frequency of 540×1012 Hz with a radiant intensity in that direction of 1/683 watt per steradian[25]: 135 

Since the base units are the reference points for all measurements taken in SI units, if the reference value changed all prior measurements would be incorrect. Before 2019, if a piece of the international prototype of the kilogram had been snapped off, it would have still been defined as a kilogram; all previous measured values of a kilogram would be heavier.[3] The importance of reproducible SI units has led the BIPM to complete the task of defining all SI base units in terms of physical constants.[26]

By defining SI base units with respect to physical constants, and not artefacts or specific substances, they are realisable with a higher level of precision and reproducibility.[26] As of the revision of the SI on 20 May 2019 the kilogram, ampere, kelvin, and mole are defined by setting exact numerical values for the Planck constant (h), the elementary electric charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. The second, metre, and candela have previously been defined by physical constants (the caesium standardνCs), the speed of light (c), and the luminous efficacy of 540×1012 Hz visible light radiation (Kcd)), subject to correction to their present definitions. The new definitions aim to improve the SI without changing the size of any units, thus ensuring continuity with existing measurements.[27][25]: 123, 128 

Realisation of units

[edit]
Computer-generated image of a small cylinder
Computer-generated image realising the international prototype of the kilogram (IPK), made from an alloy of 90-per cent platinum and 10-per cent iridium by weight

The realisation of a unit of measure is its conversion into reality.[28] Three possible methods of realisation are defined by the international vocabulary of metrology (VIM): a physical realisation of the unit from its definition, a highly-reproducible measurement as a reproduction of the definition (such as the quantum Hall effect for the ohm), and the use of a material object as the measurement standard.[29]

Standards

[edit]

A standard (or etalon) is an object, system, or experiment with a defined relationship to a unit of measurement of a physical quantity.[30] Standards are the fundamental reference for a system of weights and measures by realising, preserving, or reproducing a unit against which measuring devices can be compared.[2] There are three levels of standards in the hierarchy of metrology: primary, secondary, and working standards.[20] Primary standards (the highest quality) do not reference any other standards. Secondary standards are calibrated with reference to a primary standard. Working standards, used to calibrate (or check) measuring instruments or other material measures, are calibrated with respect to secondary standards. The hierarchy preserves the quality of the higher standards.[20] An example of a standard would be gauge blocks for length. A gauge block is a block of metal or ceramic with two opposing faces ground precisely flat and parallel, a precise distance apart.[31] The length of the path of light in vacuum during a time interval of 1/299,792,458 of a second is embodied in an artefact standard such as a gauge block; this gauge block is then a primary standard which can be used to calibrate secondary standards through mechanical comparators.[32]

Traceability and calibration

[edit]
Pyramid illustrating the relationship between traceability and calibration
Metrology traceability pyramid

Metrological traceability is defined as the "property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty".[33] It permits the comparison of measurements, whether the result is compared to the previous result in the same laboratory, a measurement result a year ago, or to the result of a measurement performed anywhere else in the world.[34] The chain of traceability allows any measurement to be referenced to higher levels of measurements back to the original definition of the unit.[2]

Traceability is obtained directly through calibration, establishing the relationship between an indication on a standard traceable measuring instrument and the value of the comparator (or comparative measuring instrument). The process will determine the measurement value and uncertainty of the device that is being calibrated (the comparator) and create a traceability link to the measurement standard.[33] The four primary reasons for calibrations are to provide traceability, to ensure that the instrument (or standard) is consistent with other measurements, to determine accuracy, and to establish reliability.[2] Traceability works as a pyramid, at the top level there is the international standards, which beholds the world's standards. The next level is the national Metrology institutes that have primary standards that are traceable to the international standards. The national Metrology institutes standards are used to establish a traceable link to local laboratory standards, these laboratory standards are then used to establish a traceable link to industry and testing laboratories. Through these subsequent calibrations between national metrology institutes, calibration laboratories, and industry and testing laboratories the realisation of the unit definition is propagated down through the pyramid.[34] The traceability chain works upwards from the bottom of the pyramid, where measurements done by industry and testing laboratories can be directly related to the unit definition at the top through the traceability chain created by calibration.[3]

Uncertainty

[edit]

Measurement uncertainty is a value associated with a measurement which expresses the spread of possible values associated with the measurand—a quantitative expression of the doubt existing in the measurement.[35] There are two components to the uncertainty of a measurement: the width of the uncertainty interval and the confidence level.[36] The uncertainty interval is a range of values that the measurement value expected to fall within, while the confidence level is how likely the true value is to fall within the uncertainty interval. Uncertainty is generally expressed as follows:[2]

Coverage factor: k = 2

Where y is the measurement value and U is the uncertainty value and k is the coverage factor[a] indicates the confidence interval. The upper and lower limit of the uncertainty interval can be determined by adding and subtracting the uncertainty value from the measurement value. The coverage factor of k = 2 generally indicates a 95% confidence that the measured value will fall inside the uncertainty interval.[2] Other values of k can be used to indicate a greater or lower confidence on the interval, for example k = 1 and k = 3 generally indicate 66% and 99.7% confidence respectively.[36] The uncertainty value is determined through a combination of statistical analysis of the calibration and uncertainty contribution from other errors in measurement process, which can be evaluated from sources such as the instrument history, manufacturer's specifications, or published information.[36]

International infrastructure

[edit]

Several international organizations maintain and standardise metrology.

Metre Convention

[edit]

The Metre Convention created three main international organizations to facilitate standardisation of weights and measures. The first, the General Conference on Weights and Measures (CGPM), provided a forum for representatives of member states. The second, the International Committee for Weights and Measures (CIPM), was an advisory committee of metrologists of high standing. The third, the International Bureau of Weights and Measures (BIPM), provided secretarial and laboratory facilities for the CGPM and CIPM.[37]

General Conference on Weights and Measures

[edit]

The General Conference on Weights and Measures (French: Conférence générale des poids et mesures, or CGPM) is the convention's principal decision-making body, consisting of delegates from member states and non-voting observers from associate states.[38] The conference usually meets every four to six years to receive and discuss a CIPM report and endorse new developments in the SI as advised by the CIPM. The last meeting was held on 13–16 November 2018. On the last day of this conference there was vote on the redefinition of four base units, which the International Committee for Weights and Measures (CIPM) had proposed earlier that year.[39] The new definitions came into force on 20 May 2019.[40][41]

International Committee for Weights and Measures

[edit]

The International Committee for Weights and Measures (French: Comité international des poids et mesures, or CIPM) is made up of eighteen (originally fourteen)[42] individuals from a member state of high scientific standing, nominated by the CGPM to advise the CGPM on administrative and technical matters. It is responsible for ten consultative committees (CCs), each of which investigates a different aspect of metrology; one CC discusses the measurement of temperature, another the measurement of mass, and so forth. The CIPM meets annually in Sèvres to discuss reports from the CCs, to submit an annual report to the governments of member states concerning the administration and finances of the BIPM and to advise the CGPM on technical matters as needed. Each member of the CIPM is from a different member state, with France (in recognition of its role in establishing the convention) always having one seat.[43][44]

International Bureau of Weights and Measures

[edit]
BIPM seal: three women, one holding a measuring stick
BIPM seal

The International Bureau of Weights and Measures (French: Bureau international des poids et mesures, or BIPM) is an organisation based in Sèvres, France which has custody of the international prototype of the kilogram, provides metrology services for the CGPM and CIPM, houses the secretariat for the organisations and hosts their meetings.[45][46] Over the years, prototypes of the metre and of the kilogram have been returned to BIPM headquarters for recalibration.[46] The BIPM director is an ex officio member of the CIPM and a member of all consultative committees.[47]

[edit]

The International Organization of Legal Metrology (French: Organisation Internationale de Métrologie Légale, or OIML), is an intergovernmental organization created in 1955 to promote the global harmonisation of the legal metrology procedures facilitating international trade.[48] This harmonisation of technical requirements, test procedures and test-report formats ensure confidence in measurements for trade and reduces the costs of discrepancies and measurement duplication.[49] The OIML publishes a number of international reports in four categories:[49]

  • Recommendations: Model regulations to establish metrological characteristics and conformity of measuring instruments
  • Informative documents: To harmonise legal metrology
  • Guidelines for the application of legal metrology
  • Basic publications: Definitions of the operating rules of the OIML structure and system

Although the OIML has no legal authority to impose its recommendations and guidelines on its member countries, it provides a standardised legal framework for those countries to assist the development of appropriate, harmonised legislation for certification and calibration.[49] OIML provides a mutual acceptance arrangement (MAA) for measuring instruments that are subject to legal metrological control, which upon approval allows the evaluation and test reports of the instrument to be accepted in all participating countries.[50] Issuing participants in the agreement issue MAA Type Evaluation Reports of MAA Certificates upon demonstration of compliance with ISO/IEC 17065 and a peer evaluation system to determine competency.[50] This ensures that certification of measuring devices in one country is compatible with the certification process in other participating countries, allowing the trade of the measuring devices and the products that rely on them.

International Laboratory Accreditation Cooperation

[edit]

The International Laboratory Accreditation Cooperation (ILAC) is an international organisation for accreditation agencies involved in the certification of conformity-assessment bodies.[51] It standardises accreditation practices and procedures, recognising competent calibration facilities and assisting countries developing their own accreditation bodies.[2] ILAC originally began as a conference in 1977 to develop international cooperation for accredited testing and calibration results to facilitate trade.[51] In 2000, 36 members signed the ILAC mutual recognition agreement (MRA), allowing members work to be automatically accepted by other signatories, and in 2012 was expanded to include accreditation of inspection bodies.[51][52] Through this standardisation, work done in laboratories accredited by signatories is automatically recognised internationally through the MRA.[53] Other work done by ILAC includes promotion of laboratory and inspection body accreditation, and supporting the development of accreditation systems in developing economies.[53]

Joint Committee for Guides in Metrology

[edit]

The Joint Committee for Guides in Metrology (JCGM) is a committee which created and maintains two metrology guides: Guide to the expression of uncertainty in measurement (GUM)[54] and International vocabulary of metrology – basic and general concepts and associated terms (VIM).[33] The JCGM is a collaboration of eight partner organisations:[55]

The JCGM has two working groups: JCGM-WG1 and JCGM-WG2. JCGM-WG1 is responsible for the GUM, and JCGM-WG2 for the VIM.[56] Each member organization appoints one representative and up to two experts to attend each meeting, and may appoint up to three experts for each working group.[55]

National infrastructure

[edit]

A national measurement system (NMS) is a network of laboratories, calibration facilities and accreditation bodies which implement and maintain a country's measurement infrastructure.[8][9] The NMS sets measurement standards, ensuring the accuracy, consistency, comparability, and reliability of measurements made in the country.[57] The measurements of member countries of the CIPM Mutual Recognition Arrangement (CIPM MRA), an agreement of national metrology institutes, are recognized by other member countries.[2] As of March 2018, there are 102 signatories of the CIPM MRA, consisting of 58 member states, 40 associate states, and 4 international organizations.[58]

Metrology institutes

[edit]
Block diagram
Overview of a national measurement system

A national metrology institute's (NMI) role in a country's measurement system is to conduct scientific metrology, realise base units, and maintain primary national standards.[2] An NMI provides traceability to international standards for a country, anchoring its national calibration hierarchy.[2] For a national measurement system to be recognized internationally by the CIPM Mutual Recognition Arrangement, an NMI must participate in international comparisons of its measurement capabilities.[9] BIPM maintains a comparison database and a list of calibration and measurement capabilities (CMCs) of the countries participating in the CIPM MRA.[59] Not all countries have a centralised metrology institute; some have a lead NMI and several decentralised institutes specialising in specific national standards.[2] Some examples of NMI's are the National Institute of Standards and Technology (NIST)[60] in the United States, the National Research Council (NRC)[61] in Canada, the Physikalisch-Technische Bundesanstalt (PTB) in Germany,[62] and the National Physical Laboratory (United Kingdom) (NPL).[63]

Calibration laboratories

[edit]

Calibration laboratories are generally responsible for calibrations of industrial instrumentation.[9] Calibration laboratories are accredited and provide calibration services to industry firms, which provides a traceability link back to the national metrology institute. Since the calibration laboratories are accredited, they give companies a traceability link to national metrology standards.[2]

Accreditation bodies

[edit]

An organisation is accredited when an authoritative body determines, by assessing the organisation's personnel and management systems, that it is competent to provide its services.[9] For international recognition, a country's accreditation body must comply with international requirements and is generally the product of international and regional cooperation.[9] A laboratory is evaluated according to international standards such as ISO/IEC 17025 general requirements for the competence of testing and calibration laboratories.[2] To ensure objective and technically-credible accreditation, the bodies are independent of other national measurement system institutions.[9] The National Association of Testing Authorities[64] in Australia and the United Kingdom Accreditation Service[65] are examples of accreditation bodies.

Impacts

[edit]

Metrology has wide-ranging impacts on a number of sectors, including economics, energy, the environment, health, manufacturing, industry, and consumer confidence.[10][11] The effects of metrology on trade and the economy are two of its most-apparent societal impacts. To facilitate fair and accurate trade between countries, there must be an agreed-upon system of measurement.[11] Accurate measurement and regulation of water, fuel, food, and electricity are critical for consumer protection and promote the flow of goods and services between trading partners.[66] A common measurement system and quality standards benefit consumer and producer; production at a common standard reduces cost and consumer risk, ensuring that the product meets consumer needs.[11] Transaction costs are reduced through an increased economy of scale. Several studies have indicated that increased standardisation in measurement has a positive impact on GDP. In the United Kingdom, an estimated 28.4 per cent of GDP growth from 1921 to 2013 was the result of standardisation; in Canada between 1981 and 2004 an estimated nine per cent of GDP growth was standardisation-related, and in Germany the annual economic benefit of standardisation is an estimated 0.72% of GDP.[11]

Legal metrology has reduced accidental deaths and injuries with measuring devices, such as radar guns and breathalyzers, by improving their efficiency and reliability.[66] Measuring the human body is challenging, with poor repeatability and reproducibility, and advances in metrology help develop new techniques to improve health care and reduce costs.[67] Environmental policy is based on research data, and accurate measurements are important for assessing climate change and environmental regulation.[68] Aside from regulation, metrology is essential in supporting innovation, the ability to measure provides a technical infrastructure and tools that can then be used to pursue further innovation. By providing a technical platform which new ideas can be built upon, easily demonstrated, and shared, measurement standards allow new ideas to be explored and expanded upon.[11]

See also

[edit]

Notes

[edit]

References

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
Metrology is the science of measurement, encompassing both the theoretical and practical aspects of measurement, including the development of measurement standards, procedures, and their applications across various fields. The field is typically divided into three main branches: scientific metrology, which focuses on the establishment of measurement units, standards, and fundamental principles to advance research and technology; applied or industrial metrology, which involves the practical implementation of these standards in manufacturing, quality control, and engineering to ensure precision and reliability; and legal metrology, which regulates measuring instruments and processes subject to legal oversight to protect consumers, support fair trade, and enforce regulatory compliance. Metrology underpins economic security, innovation, and global trade by providing traceable and accurate measurements that enable comparability of data, conformity assessment, and the realization of units in the International System of Units (SI). Institutions such as the National Institute of Standards and Technology (NIST) and the International Organization for Standardization (ISO) play central roles in advancing metrology through research, calibration services, and international agreements like the Metre Convention.

History

Origins and Early Developments

Metrology, the science of measurement, originated in ancient civilizations where standardized units were essential for agriculture, construction, and trade. In ancient Egypt around 3000 BCE, the cubit emerged as a fundamental unit for land surveying, particularly after the annual Nile floods redistributed soil and altered boundaries. The royal cubit, a refined version approximately 0.524 meters long, was used by surveyors to reestablish property lines and calculate areas for taxation purposes, ensuring economic stability in a flood-dependent society. Mesopotamian societies, contemporaneous with early Egyptian developments, contributed significantly to metrological systems through sexagesimal (base-60) units that influenced later time and angular measurements. By around 3000 BCE, standardized weights and measures facilitated trade and administration across city-states like Sumer and Babylon, with metrological lists and tables documenting conversions between units such as the shekel for weights. In ancient Greece, these traditions evolved further; the Attic foot, roughly 0.294 meters, became a common length unit in architecture and athletics, while physicians like Hippocrates emphasized precise observation and quantitative assessment in medical practice to improve prognoses and treatments. During the medieval period in Europe, efforts toward standardization intensified to support expanding trade and governance. In the late 8th century, Charlemagne enacted reforms to unify weights and measures across his empire, issuing edicts that prescribed consistent standards for the libra (pound) and other units to reduce discrepancies in commerce and taxation. These initiatives laid groundwork for more systematic metrology, though regional variations persisted. The late 18th and early 19th centuries marked a shift toward national prototypes. In 1799, the French Academy of Sciences introduced the metre prototype—a platinum bar defined as one ten-millionth of the Earth's quadrant—deposited in the National Archives as the basis for the decimal metric system. Similarly, Britain's Weights and Measures Act of 1824 established imperial standards, defining the yard, pound, and gallon through official prototypes verified against natural references, thereby codifying a unified system for the realm.

Evolution in the Modern Era

The signing of the Metre Convention on 20 May 1875 by representatives from 17 nations marked a pivotal institutional advancement in metrology, establishing the International Bureau of Weights and Measures (BIPM) to maintain and promote uniform metric standards globally. This treaty facilitated the creation of the international prototype of the metre, a platinum-iridium bar sanctioned by the 1st General Conference on Weights and Measures (CGPM) in 1889 as the definitive standard of length, replacing earlier national prototypes and enabling international comparisons. The prototype, deposited at the BIPM in Sèvres, France, served as the benchmark until the late 20th century, underscoring the shift from empirical to institutionalized global metrology. Throughout the 20th century, technological breakthroughs drove successive redefinitions of the metre to enhance precision and universality. In 1960, the 11th CGPM redefined the metre as the length equal to 1,650,763.73 wavelengths in vacuum of the radiation corresponding to the transition between the 2p102p_{10} and 5d55d_5 levels of the krypton-86 atom, moving away from the artifact-based prototype toward a reproducible spectral standard. This was further refined in 1983 by the 17th CGPM, which defined the metre as the length of the path travelled by light in vacuum during a time interval of 1/2997924581/299\,792\,458 of a second, fixing the speed of light at exactly c=299792458c = 299\,792\,458 m/s and eliminating material dependencies. These changes reflected advances in spectroscopy and laser technology, improving measurement accuracy to parts in 10910^9. The 2019 revision of the International System of Units (SI), effective from 20 May 2019 and approved by the 26th CGPM in 2018, represented a comprehensive overhaul by anchoring all base units to fixed fundamental constants, ensuring long-term stability without physical artifacts. For instance, the second is defined by the fixed numerical value of the caesium-133 hyperfine transition frequency ΔνCs=9192631770\Delta \nu_{\mathrm{Cs}} = 9\,192\,631\,770 Hz, originally set in 1967 but reaffirmed in the revision. The kilogram was redefined using the Planck constant h=6.62607015×1034h = 6.626\,070\,15 \times 10^{-34} J⋅s, realized through the Kibble balance and X-ray crystal density methods, while other units like the ampere, kelvin, and mole were similarly tied to constants such as the elementary charge and Boltzmann constant. This quantum-based framework enhanced traceability and precision across scientific metrology. In the late 20th century, quantum metrology emerged as a transformative field, leveraging quantum phenomena for unprecedented measurement accuracy in time and electrical standards. Atomic clocks, based on the caesium hyperfine transition, achieved stabilities better than 1 part in 101510^{15}, revolutionizing timekeeping and synchronization in global positioning systems. Concurrently, Josephson voltage standards, utilizing the AC Josephson effect in superconducting junctions, provided quantized voltage steps at V=n(hf/2e)V = n \cdot (h f / 2e), where nn is an integer, ff is the microwave frequency, hh is Planck's constant, and ee is the elementary charge, enabling calibrations with uncertainties below 1 part in 101010^{10} since their practical implementation in the 1970s. These developments, rooted in quantum mechanics, laid the groundwork for the 2019 SI redefinitions and extended metrology's reach into quantum technologies. Post-2020, metrology has increasingly integrated artificial intelligence (AI) and digital twins to address complex, dynamic measurement challenges in industrial and scientific applications. By learning from metrological data, AI can detect anomalies, optimize processes, predict uncertainties, and support calibration in systems like coordinate measuring machines. Digital twins—virtual replicas of physical measurement setups—enable simulation-based validation, reducing physical prototyping needs and improving traceability in smart manufacturing, with adoption accelerating by 2025 in sectors like aerospace and semiconductors. These trends, driven by Industry 4.0, promise to bridge classical and quantum metrology for more adaptive, predictive standards.

Subfields

Scientific Metrology

Scientific metrology encompasses the theoretical and experimental foundations of measurement science, focusing on the establishment of units, the development of primary standards, and the realization of fundamental physical constants to ensure the highest levels of accuracy in scientific research. It involves advancing measurement techniques grounded in fundamental physics, such as atomic and quantum phenomena, to support discoveries in fields like particle physics and cosmology. Unlike applied metrology, scientific metrology prioritizes the maintenance and improvement of international measurement standards at the highest level of precision, often achieving uncertainties on the order of parts in 101810^{18}. Key activities in scientific metrology include the development and realization of primary standards for SI base units. For instance, the SI second is realized using cesium fountain atomic clocks, which define the unit by the fixed numerical value of the caesium-133 hyperfine transition frequency ΔνCs=9192631770\Delta \nu_{\text{Cs}} = 9\,192\,631\,770 Hz, corresponding to 9,192,631,770 periods of the radiation. These clocks, operated by national metrology institutes, provide timekeeping stability essential for synchronizing global scientific experiments, with fractional frequency uncertainties below 101510^{-15}. Similarly, electrical units like the ohm are realized through quantum Hall effect standards, where cryogenic current comparators (CCCs) enable precise comparisons of currents at ratios up to 108:110^8:1 with uncertainties as low as 0.1 parts per million, facilitating the link between resistance and fundamental constants. Research in scientific metrology increasingly explores quantum metrology techniques to surpass classical precision limits. Quantum entanglement, for example, enables measurements approaching the Heisenberg limit, where sensitivity scales as 1/N1/N (with NN the number of particles) rather than the standard quantum limit of 1/N1/\sqrt{N}
Add your contribution
Related Hubs
User Avatar
No comments yet.