Hubbry Logo
search button
Sign in
Suslin tree
Suslin tree
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Suslin tree
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Suslin tree Wikipedia article. Here, you can discuss, collect, and organize anything related to Suslin tree. The purpose of the hub is to connect people, f...
Add your contribution
Suslin tree

In mathematics, a Suslin tree is a tree of height ω1 such that every branch and every antichain is countable. They are named after Mikhail Yakovlevich Suslin.

Every Suslin tree is an Aronszajn tree.

The existence of a Suslin tree is independent of ZFC, and is equivalent to the existence of a Suslin line (shown by Kurepa (1935)) or a Suslin algebra. The diamond principle, a consequence of V=L, implies that there is a Suslin tree, and Martin's axiom MA(ℵ1) implies that there are no Suslin trees.

More generally, for any infinite cardinal κ, a κ-Suslin tree is a tree of height κ such that every branch and antichain has cardinality less than κ. In particular a Suslin tree is the same as a ω1-Suslin tree. Jensen (1972) showed that if V=L then there is a κ-Suslin tree for every infinite successor cardinal κ. Whether the Generalized Continuum Hypothesis implies the existence of an ℵ2-Suslin tree, is a longstanding open problem.

See also

[edit]

References

[edit]
  • Thomas Jech, Set Theory, 3rd millennium ed., 2003, Springer Monographs in Mathematics, Springer, ISBN 3-540-44085-2
  • Jensen, R. Björn (1972), "The fine structure of the constructible hierarchy.", Ann. Math. Logic, 4 (3): 229–308, doi:10.1016/0003-4843(72)90001-0, MR 0309729 erratum, ibid. 4 (1972), 443.
  • Kunen, Kenneth (2011), Set theory, Studies in Logic, vol. 34, London: College Publications, ISBN 978-1-84890-050-9, Zbl 1262.03001
  • Kurepa, G. (1935), "Ensembles ordonnés et ramifiés", Publ. Math. Univ. Belgrade, 4: 1–138, JFM 61.0980.01, Zbl 0014.39401