Bob
Have a question related to this hub?
Alice
Got something to say related to this hub?
Share it here.
The following tables compare notable software frameworks, libraries, and computer programs for deep learning applications.
Software | Creator | Initial release | Software license[a] | Open source
|
Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | Automatic differentiation[2] | Has pretrained models | Parallel execution
(multi node) |
Actively developed
| ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BigDL | Jason Dai (Intel) | 2016 | Apache 2.0 | Yes | Apache Spark | Scala | Scala, Python | No | No | Yes | Yes | Yes | Yes | |||||
Caffe | Berkeley Vision and Learning Center | 2013 | BSD | Yes | Linux, macOS, Windows[3] | C++ | Python, MATLAB, C++ | Yes | Under development[4] | Yes | No | Yes | Yes[5] | Yes | Yes | No | ? | No[6] |
Chainer | Preferred Networks | 2015 | BSD | Yes | Linux, macOS | Python | Python | No | No | Yes | No | Yes | Yes | Yes | Yes | No | Yes | No[7] |
Deeplearning4j | Skymind engineering team; Deeplearning4j community; originally Adam Gibson | 2014 | Apache 2.0 | Yes | Linux, macOS, Windows, Android (Cross-platform) | C++, Java | Java, Scala, Clojure, Python (Keras), Kotlin | Yes | No[8] | Yes[9][10] | No | Computational Graph | Yes[11] | Yes | Yes | Yes | Yes[12] | Yes |
Dlib | Davis King | 2002 | Boost Software License | Yes | Cross-platform | C++ | C++, Python | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | Yes | Yes |
Flux | Mike Innes | 2017 | MIT license | Yes | Linux, MacOS, Windows (Cross-platform) | Julia | Julia | Yes | No | Yes | Yes[13] | Yes | Yes | No | Yes | Yes | ||
Intel Data Analytics Acceleration Library | Intel | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows on Intel CPU[14] | C++, Python, Java | C++, Python, Java[14] | Yes | No | No | No | Yes | No | Yes | Yes | Yes | ||
Intel Math Kernel Library 2017 [15] and later | Intel | 2017 | Proprietary | No | Linux, macOS, Windows on Intel CPU[16] | C/C++, DPC++, Fortran | C[17] | Yes[18] | No | No | No | Yes | No | Yes[19] | Yes[19] | No | Yes | |
Google JAX | 2018 | Apache 2.0 | Yes | Linux, macOS, Windows | Python | Python | Only on Linux | No | Yes | No | Yes | Yes | ||||||
Keras | François Chollet | 2015 | MIT license | Yes | Linux, macOS, Windows | Python | Python, R | Only if using Theano as backend | Can use Theano, Tensorflow or PlaidML as backends | Yes | No | Yes | Yes[20] | Yes | Yes | No[21] | Yes[22] | Yes |
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) | MathWorks | 1992 | Proprietary | No | Linux, macOS, Windows | C, C++, Java, MATLAB | MATLAB | No | No | Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder[23] | No | Yes[24] | Yes[25][26] | Yes[25] | Yes[25] | Yes | With Parallel Computing Toolbox[27] | Yes |
Microsoft Cognitive Toolkit (CNTK) | Microsoft Research | 2016 | MIT license[28] | Yes | Windows, Linux[29] (macOS via Docker on roadmap) | C++ | Python (Keras), C++, Command line,[30] BrainScript[31] (.NET on roadmap[32]) | Yes[33] | No | Yes | No | Yes | Yes[34] | Yes[35] | Yes[35] | No[36] | Yes[37] | No[38] |
MindSpore | Huawei | 2020 | Apache 2.0 | Yes | Linux, Windows, macOS, EulerOS, openEuler, OpenHarmony, Oniro OS, HarmonyOS, Android | C++, Rust, Julia, Python, ArkTS, Cangjie, Java (Lite) | ||||||||||||
ML.NET | Microsoft | 2018 | MIT license | Yes | Windows, Linux, macOS | C#, C++ | C#, F# | Yes | ||||||||||
Apache MXNet | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[39][40] AWS, Android,[41] iOS, JavaScript[42] | Small C++ core library | C++, Python, Julia, MATLAB, JavaScript, Go, R, Scala, Perl, Clojure | Yes | No | Yes | No | Yes[43] | Yes[44] | Yes | Yes | Yes | Yes[45] | No |
Neural Designer | Artelnics | 2014 | Proprietary | No | Linux, macOS, Windows | C++ | Graphical user interface | Yes | No | Yes | No | Analytical differentiation | No | No | No | No | Yes | Yes |
OpenNN | Artelnics | 2003 | GNU LGPL | Yes | Cross-platform | C++ | C++ | Yes | No | Yes | No | ? | Yes[46] | No | No | No | ? | Yes |
PlaidML | Vertex.AI, Intel | 2017 | Apache 2.0 | Yes | Linux, macOS, Windows | Python, C++, OpenCL | Python, C++ | ? | Some OpenCL ICDs are not recognized | No | No | Yes | Yes | Yes | Yes | Yes | Yes | |
PyTorch | Meta AI | 2016 | BSD | Yes | Linux, macOS, Windows, Android[47] | Python, C, C++, CUDA | Python, C++, Julia, R[48] | Yes | Via separately maintained package[49][50][51] | Yes | Yes | Yes | Yes | Yes | Yes | Yes[52] | Yes | Yes |
Apache SINGA | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows | C++ | Python, C++, Java | No | Supported in V1.0 | Yes | No | ? | Yes | Yes | Yes | Yes | Yes | Yes |
TensorFlow | Google Brain | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[53][54] Android | C++, Python, CUDA | Python (Keras), C/C++, Java, Go, JavaScript, R,[55] Julia, Swift | No | On roadmap[56] but already with SYCL[57] support | Yes | Yes | Yes[58] | Yes[59] | Yes | Yes | Yes | Yes | Yes |
Theano | Université de Montréal | 2007 | BSD | Yes | Cross-platform | Python | Python (Keras) | Yes | Under development[60] | Yes | No | Yes[61][62] | Through Lasagne's model zoo[63] | Yes | Yes | Yes | Yes[64] | No |
Torch | Ronan Collobert, Koray Kavukcuoglu, Clement Farabet | 2002 | BSD | Yes | Linux, macOS, Windows,[65] Android,[66] iOS | C, Lua | Lua, LuaJIT,[67] C, utility library for C++/OpenCL[68] | Yes | Third party implementations[69][70] | Yes[71][72] | No | Through Twitter's Autograd[73] | Yes[74] | Yes | Yes | Yes | Yes[65] | No |
Wolfram Mathematica 10[75] and later | Wolfram Research | 2014 | Proprietary | No | Windows, macOS, Linux, Cloud computing | C++, Wolfram Language, CUDA | Wolfram Language | Yes | No | Yes | No | Yes | Yes[76] | Yes | Yes | Yes | Yes[77] | Yes |
Software | Creator | Initial release | Software license[a] | Open source
|
Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | Automatic differentiation[2] | Has pretrained models | Parallel execution
(multi node) |
Actively developed
|
Format name | Design goal | Compatible with other formats | Self-contained DNN Model | Pre-processing and Post-processing | Run-time configuration for tuning & calibration | DNN model interconnect | Common platform |
---|---|---|---|---|---|---|---|
TensorFlow, Keras, Caffe, Torch | Algorithm training | No | No / Separate files in most formats | No | No | No | Yes |
ONNX | Algorithm training | Yes | No / Separate files in most formats | No | No | No | Yes |
{{cite web}}
: CS1 maint: numeric names: authors list (link)